Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: A=(1+1/1*3)(1+1/2*4)*...*(1+1/2019*2021)
\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot...\cdot\dfrac{2020^2}{\left(2020-1\right)\left(2020+1\right)}\)
\(=\dfrac{2}{1}\cdot\dfrac{3}{2}\cdot...\cdot\dfrac{2020}{2019}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2020}{2021}=2020\cdot\dfrac{2}{2021}=\dfrac{4040}{2021}\)
a, ( - 7 ) x ( - 8 ) = 56
b, 3 / 7 x ( - 2 / 9 ) = - 6 / 63 = - 2 / 21
c, - 7 / 6 : 7 / 12 = - 7 / 6 x 12 / 7 = - 12 / 6 = -2
d, - 1 / 2 x 3 / 4 + 1 / 4 x ( - 1 / 2 ) = - 1 / 2 x ( 3 / 4 + 1 / 4 ) = - 1 / 2 x 1 = - 1 / 2
bài này dễ mà bạn bạn chỉ cần đổi ra rồi tính bình thường là đc mà
Bài 1:
\(A=2^2\cdot3-4\\ =4\cdot3-4\\ =4\cdot\left(3-1\right)\\ =4\cdot2\\ =8\\ B=16-2^3\cdot2\\ =16-16\\ =0\\ C=4^2-4\cdot2\\ =4\cdot\left(4-2\right)\\ =4\cdot2\\ =8\\ D=3^3-3\cdot3^2\\ =3^3-3^3\\ =0\)
S=(1/1.3+1/3.5+.....+1/7.9)+(1/2.4+1/4.8+1/8.10)
2S=1/2.(1-1/3+1/5-1/5+....+1/7-1/9)+(1/2-1/4+1/4-1/8+1/8-1/10)
2S=1/2.(1-1/9)+(1/2-1/10)
2S=1/2.(8/9+2/5)
Lời giải:
Gọi tích trên là $A$
Xét thừa số tổng quát: $1+\frac{1}{n(n+2)}=\frac{n(n+2)+1}{n(n+2)}=\frac{(n+1)^2}{n(n+2)}$
Thay $n=1,2,3....,2019$ ta có:
$A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}....\frac{2020^2}{2019.2021}$
$=\frac{2^2.3^2...2020^2}{(1.3)(2.4)(3.5)...(2019.2021)}$
$=\frac{(2.3....2020)(2.3...2020)}{(1.2.3...2019)(3.4...2021)}$
$=2020.\frac{2}{2021}=\frac{4040}{2021}$