Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
+ Gọi H là một điểm bất kì nằm trên BM. Tương tự, để H cực đại thì:
d 1 - d 2 = ( k + 1 2 ) λ
+ Từ hình vẽ ta thấy khoảng giá trị của hiệu số d1 – d2:
AM - 2 AM ≤ d 1 - d 2 ≤ AB
+ Kết hợp hai phương trình trên ta thu được:
AM ( 1 - 2 ) λ - 1 2 ≤ k ≤ A B λ - 1 2
→ - 6 , 02 ≤ k ≤ 12 , 8
Vậy sẽ có 19 điểm dao động với biên độ cực đại trên đoạn BM.
Đáp án C
+ Gọi H là một điểm bất kì nằm trên BM. Tương tự, để H cực đại thì
d 1 - d 2 = ( k + 1 2 ) λ
+ Từ hình vẽ ta thấy khoảng giá trị của hiệu số
+ Kết hợp hai phương trình trên ta thu được
Vậy sẽ có 19 điểm dao động với biên độ cực đại trên đoạn BM
Đáp án C
+ Gọi H là một điểm bất kì nằm trên BM. Tương tự, để H cực đại thì:
d 1 - d 2 = ( k + 1 2 ) λ
Vậy sẽ có 19 điểm dao động với biên độ cực đại trên đoạn BM.
Chọn đáp án A
Hai nguồn kết hợp ngược pha d 1 − d 2 = m λ d 1 − d 2 = k − 0 , 5 λ
Cực đại thuộc BM:
d 1 − d 2 = k + 0 , 5 λ = k + 0 , 5 1 , 5 M A − M B ≤ d 1 − d 2 < B A − B B ⇒ − 8 , 3 ≤ k + 0 , 5 1 , 5 < 20
⇒ − 6 , 03 ≤ k < 12 , 8 ⇒ k = − 6 , − 5 , − 4 , ... , 12
Vậy có 19 giá trị của k
+ Gọi d1, d2 là khoảng cách từ M đến 2 nguồn ( M thuộc đường tròn và thỏa yêu cầu)
+ M thuộc đường tròn nên góc AMB là góc vuông → d12 + d22 = ( 8 2 ) 2
+ M dao động với biên độ cực đại nên: d1 - d2 = kl
Mà λ = v . T = 0 , 6 . 2 π 30 π = 0 , 04 m m
+ Giải hệ phương trình trên ta được: 2d22 + 8kd2 + 16k2 - 128 = 0
Chỉ có k = 0 là thỏa mãn → d1 = d2 = 8 cm
+ M dao động cùng pha với nguồn nên d1 + d2 = 2k’l → k’ = 2
Vậy có tất cả 2 điểm.
Đáp án D
- Gọi d1, d2 là khoảng cách từ M đến 2 nguồn (M thuộc đường tròn và thỏa yêu cầu)
+ M thuộc đường tròn nên góc AMB là góc vuông
+ M dao động với biên độ cực đại nên: d1 - d2 = kλ
- Giải hệ phương trình trên ta được:
+ Chỉ có k = 0 là thỏa mãn ⇒ d1 = d2 = 8 cm
+ M dao động cùng pha với nguồn nên:
- Vậy có tất cả 2 điểm.
+ Gọi d1, d2 là khoảng cách từ M đến 2 nguồn (M thuộc đường tròn và thỏa yêu cầu)
+ M thuộc đường tròn nên góc AMB là góc vuông ® d12 + d22 = 8 2 2
+ M dao động với biên độ cực đại nên: d1- d2 = kl
Mà λ = v . T = 0 , 6 . 2 π 30 π = 0 , 04 m
+ Giải hệ phương trình trên ta được: 2d22 + 8kd2 + 16k2- 128 = 0
Chỉ có k = 0 là thỏa mãn ® d1 = d2 = 8 cm
+ M dao động cùng pha với nguồn nên d1 + d2 = 2k’l® k’ = 2
Vậy có tất cả 2 điểm.
Chọn đáp án D
Đáp án D
+ Bước sóng của sóng λ = 2 π v ω = 4 c m
Số dãy cực đại giao thoa - S 1 S 2 λ ≤ k ≤ S 1 S 2 λ
→ có 11 cực đại
Chọn C
λ = v f = 4 c m
Hai nguồn dao động ngược pha nhau nên
- 20 < ( k + 0 , 5 ) λ < 20 → - 20 < ( k + 0 , 5 ) · 4 < 20
có 10 giá trị k thỏa mãn
Đáp án A
Bước sóng của sóng λ = 2 πv ω = 4 cm .
Số cực đại giao thoa trên S1S2: - S 1 S 2 λ ≤ k ≤ S 1 S 2 λ ⇔ - 3 , 25 ≤ k ≤ 3 , 25
→ có 7 điểm.