Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo
a)
-7x2(3x - 4y)
= -7x2.3x + 7x2ư.4y
= -21x2 + 28x2y
b)
(x - 3)(5x - 4)
= x.5x - x.4 - 3.5x + 3.4
= 5x2 - 4x - 15x + 12
= 5x2 - 19x + 12
c)
(2x - 1)2 = 4x2 - 4x + 1
d)
(x + 3)(x - 3) = x2 - 32 = x2 - 9
Trả lời:
Bài 4:
b, B = ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 )
= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1
= x8 - 1
Thay x = 2 vào biểu thức B, ta có:
28 - 1 = 255
c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 )
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7 + 1
Thay x = 2 vào biểu thức C, ta có:
27 + 1 = 129
d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 )
= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x
= x
Thay x = - 5 vào biểu thức D, ta có:
D = - 5
Bài 5:
a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )
= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4
= x4 - y4
Thay x = 2; y = - 1/2 vào biểu thức A, ta có:
A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16
b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 )
= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5
= a5 + a4b - ab4 - b5
Thay a = 3; b = - 2 vào biểu thức B, ta có:
B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65
c, ( x2 - 2xy + 2y2 ) ( x2 + y2 ) + 2x3y - 3x2y2 + 2xy3
= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y2 + 2xy3
= x4 + 2y4
Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:
( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16
a) \(\left(x^2-1\right)\left(x^2+2x\right)=x^4+2x^3-x^2-2x\)
b) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)=6x^2-3x+4x-2\left(3-x\right)\)
\(=6x^2-3x+4x-6+2x\)
\(=6x^2+3x-6\)
c) \(\left(x+3\right)\left(x^2+3x-5\right)=x^3+3x^2+3x^2+9x-5x-15\)
\(=x^3+6x^2+4x-15\)
d) \(\left(x+1\right)\left(x^2-x+1\right)=x^3+x^2-x^2-x+x+1\)
\(=x^3+1\)
e) \(\left(2x^3-3x-1\right)\left(5x+2\right)=10x^4-15x^2-5x+4x^3-6x-2\)
\(=10x^4+4x^3-15x^2-11x-2\)
f) \(\left(x^2-2x+3\right)\left(x-4\right)=x^3-2x^2+3x-4x^2+8x-12\)
\(=x^3-6x^2+11x-12\)
1 ) Thực hiện phép tính :
a ) \(-\frac{1}{3}xz\left(-9xy+15yz\right)+3x^2\left(2yz^2-yz\right)\)
\(=3x^2yz-5xyz^2+6x^2yz^2-3x^2yz\)
\(=-5xyz^2+6x^2yz^2\)
b ) \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)
\(=x^3-5x^2-x-2x^2+10x-2-x^3-11x\)
\(=-7x^2-2x-2-x^3\)
c ) \(\left(x^3+5x^2-2x+1\right)\left(x-7\right)\)
\(=x^4+5x^3-2x^2+x-7x^3-35x^2+14x-7\)
\(=x^4-2x^3-37x^2+15x-7\)
d ) \(\left(2x^2-3xy+y^2\right)\left(x+y\right)\)
\(=2x^3-3x^2y+xy^2+2x^2y-3xy^2+y^3\)
\(=2x^3-x^2y-2xy^2+y^3\)
e ) \(\left[\left(x^2-2xy+2y^2\right)\left(x+2y\right)-\left(x^2-4y^2\right)\left(x-y\right)\right]2xy\)
( để xem lại )
2 Tìm x
a ) \(6x\left(5x+3\right)+3x\left(1-10x\right)=7\)
\(\Leftrightarrow30x^2+18x+3x-30x^2=7\)
\(\Leftrightarrow21x=7\)
\(\Leftrightarrow x=3\)
b ) Sai đề
c ) \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^2\left(x+8\right)=27\)
( Để xem lại )
mình chép đúng theo đề cô cho mà sao lại sai được ,hay cô cho sai đề
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Bài 1 :
a, \(\left(x^2-2x+3\right)\left(x-4\right)=0\)
TH1 : \(x^2-2x+3=0\)
\(\left(-2\right)^2-4.3=4-12< 0\)vô nghiệm
TH2 : \(x-4=0\Leftrightarrow x=4\)
b, \(\left(2x^2-3x-1\right)\left(5x+2\right)=0\)
TH1 : \(\left(-3\right)^2-4.\left(-1\right).2=9+8=17>0\)
\(\Rightarrow x_1=\frac{3-\sqrt{17}}{4};x_2=\frac{3+\sqrt{17}}{4}\)
TH2 ; \(5x+2=0\Leftrightarrow x=-\frac{2}{5}\)
c, đưa về hệ đc ko ?
d, \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)=0\)
TH1 : \(x=0,74...\) ( bấm máy cx ra )
TH2 : \(\left(-1\right)^2-4.2.4< 0\)vô nghiệm
KL : vô nghiệm
Bài 2 :
a, \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18x-12\right)\)
\(=6x^2+21x-2x-7-6x^2+5x-6x+5-18x+12=10\)
Vậy biểu thức ko phụ thuộc vào biến
b, \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4y^4\)
\(=x^4+x^3y+x^2y^2+xy^3-yx^3-y^2x^2-y^3x-y^4-x^4y^4\)
\(=x^4-y^4-x^4y^4\)Vậy biểu thức phụ thuộc vào biến
Bài 3:
\(\Leftrightarrow x^3+64-x^3+25x=264\)
hay x=8
\(1,C=6x^2+23x-55-6x^2-23x-21=-76\\ 2,=\left(2x^4-x^2+2x^3-x-6x^2+6-3\right):\left(2x^2-1\right)\\ =\left[\left(2x^2-1\right)\left(x^2+x-6\right)-3\right]:\left(2x^2-1\right)\\ =x^2+x-6\left(dư.-3\right)\\ 3,\Leftrightarrow x^3+64-x^3+25x=264\\ \Leftrightarrow25x=200\Leftrightarrow x=8\)
\(a,=-21x^3+28x^2y\\ b,=5x^2-4x-15x+12=5x^2-19x+12\\ c,=4x^2-4x+1\\ d,=49-x^2\)