Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(-3ab\left(a^2-3b\right)=-3a^3b+9ab^2\)
2: \(\left(x-2y\right)\left(x^2-2xy+y^2\right)\)
\(=x^3-2x^2y+xy^2-2x^2y+4xy^2-2y^3\)
\(=x^3-4x^2y+5xy^2-2y^3\)
a.
(x^2 + y^2 - 2xy) + (x^2 + y^2 + 2xy)
= x^2 + y^2 - 2xy + x^2 + y^2 + 2xy
= (x^2 + x^2) + (y^2 + y^2) + (2xy - 2xy)
= 2x^2 + 2y^2
b.
(x^2 + y^2 - 2xy) - (x^2 + y^2 + 2xy)
= x^2 + y^2 - 2xy - x^2 - y^2 - 2xy
= (x^2 - x^2) + (y^2 - y^2) - (2xy + 2xy)
= -4xy
a) Ta có: \(\left(5x-2y\right)\left(x^2-xy+1\right)\)
\(=5x^3-5x^2y+5x-2x^2y+2xy^2-2y\)
\(=5x^3-7x^2y+2xy^2+5x-2y\)
b) Ta có: \(\left(x-1\right)\left(x+1\right)\left(x+2\right)\)
\(=\left(x^2-1\right)\left(x+2\right)\)
\(=x^3+2x^2-x-2\)
c) Ta có: \(\dfrac{1}{2}x^2y^2\cdot\left(2x+y\right)\left(2x-y\right)\)
\(=\dfrac{1}{2}x^2y^2\left(4x^2-y^2\right)\)
\(=2x^4y^2-\dfrac{1}{2}x^2y^4\)
`a)A=x(x+y)-x(y-x)`
`=x^2+xy-xy+x^2`
`=2x^2`
Thay `x=-3`
`=>A=2.9=18`
`b)B=4x(2x+y)+2y(2x+y)-y(y+2x)`
`=8x^2+4xy+4xy+2y^2-y^2-2xy`
`=8x^2+y^2+6xy`
Thay `x=1/2,y=-3/4`
`=>B=8*1/4+9/16-9/4`
`=2+9/16-9/4`
`=9/16-1/4=5/16`
a)\({-1\over 2}x^2×y^2 - x^2×y^2 +{2\over 3} x^2×y^2 \)
=\(({ -1\over 2}-1+{ 2\over 3})x^2×y^2\)
=\({-5 \over 6}x^2×y^2\)
b)\({1 \over 2}a^3×b^2 +{4 \over 3}3ab^2 × {1 \over 2}a^2\)
=\({1 \over 2}a^3×b^2 +({4 \over 3}× {1 \over 2})3b^2 (a×a^2) \)
=\({1 \over 2}a^3×b^2 +{2 \over 3}3a^3b^2\)
=\(({1 \over 2} +{2 \over 3}3)a^3b^2\)
=\({5 \over 2}a^3b^2\)
c)
\(-3ab.\left(a^2-3b\right)\)
\(=-3a^3b+9ab^2\)
\(\left(x^2-2xy+y^2\right)\left(x-2y\right)\)
\(=x^3-2x^2y+xy^2-2x^2y+4xy^2-2y^3\)
\(=x^3-4x^2y+5xy^2-2y^3\)
a) \(-3ab.\left(a^2-3b\right)=-3ab.a^2+3ab.3b=-3a^3b+9ab^2\)
b) \(\left(x^2-2xy+y^2\right).\left(x-2y\right)=\left(x-2y\right).x^2-\left(x-2y\right).2xy+\left(x-2y\right).y^2\)
\(=xx^2-2yx^2-2xyx+2xy2y+xy^2-2yy^2\)
\(=x^3-\left(2yx^2+2yx^2\right)+\left(4xy^2+xy^2\right)-2y^3\)
\(=x^3-4yx^2+5xy^2-2y^3\)
mk chỉ có thể thu gọn đc thôi, mk ko tính đc đâu!