Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{5}{7} = \dfrac{{5.4}}{{7.4}} = \dfrac{{20}}{{28}}\) và \(\dfrac{{ - 3}}{4} = \dfrac{{ - 3.7}}{{4.7}} = \dfrac{{ - 21}}{{28}}\)
Như vậy, \(\dfrac{{20}}{{28}} + \dfrac{{ - 21}}{{28}} = \dfrac{{20 + \left( { - 21} \right)}}{{28}} = \dfrac{-1}{{28}}\)
Ta có:
\(\frac{{ - 2}}{5} = \frac{{ - 2.8}}{{5.8}} = \frac{{ - 16}}{{40}}\)
\(\frac{{ - 3}}{8} = \frac{{ - 3.5}}{{8.5}} = \frac{{ - 15}}{{40}}\)
\(\frac{3}{{ - 4}} = \frac{{ - 3}}{4} = \frac{{ - 3.10}}{{4.10}} = \frac{{ - 30}}{{40}}\)
Do -30 < -16 < -15 nên \(\frac{{ - 30}}{{40}} < \frac{{ - 16}}{{40}} < \frac{{ - 15}}{{40}}\). Do đó \(\frac{3}{{ - 4}} < \frac{{ - 2}}{5} < \frac{{ - 3}}{8}\).
+ Quy đồng mẫu các phân số: \(\dfrac{3}{4}\) và \(\dfrac{5}{6}\):
\(BCNN\left( {6,4} \right) = 12\)
Thừa số phụ: \(12:4 = 3; 12:6=2\)
Ta có: \(\dfrac{3}{4} = \dfrac{{3.3}}{{4.3}} = \dfrac{9}{{12}}\\\dfrac{5}{6} = \dfrac{{5.2}}{{6.2}} = \dfrac{{10}}{{12}}\)
+ So sánh hai phân số cùng mẫu:
Vì 9 < 10 nên \(\dfrac{9}{{12}} < \dfrac{{10}}{{12}}\) nên \(\dfrac{3}{4} < \dfrac{5}{6}\).
Ta có:
\(\frac{{ - 4}}{{ - 15}} = \frac{4}{{15}} = \frac{{4.3}}{{15.3}} = \frac{{12}}{{45}}\)
\(\frac{{ - 2}}{{ - 9}} = \frac{2}{9} = \frac{{2.5}}{{9.5}} = \frac{{10}}{{45}}\).
Do \(\frac{{12}}{{45}} > \frac{{10}}{{45}}\) nên \(\frac{{ - 4}}{{ - 15}} > \frac{{ - 2}}{{ - 9}}\)
1. a) Ta có BCNN(12, 15) = 60 nên ta lấy mẫu chung của hai phân số là 60.
Thừa số phụ:
60:12 =5; 60:15=4
Ta được:
\(\frac{5}{{12}} = \frac{{5.5}}{{12.5}} = \frac{{25}}{{60}}\)
\(\frac{7}{{15}} = \frac{{7.4}}{{15.4}} = \frac{{28}}{{60}}\)
b) Ta có BCNN(7, 9, 12) = 252 nên ta lấy mẫu chung của ba phân số là 252.
Thừa số phụ:
252:7 = 36; 252:9 = 28; 252:12 = 21
Ta được:
\(\frac{2}{7} = \frac{{2.36}}{{7.36}} = \frac{{72}}{{252}}\)
\(\frac{4}{9} = \frac{{4.28}}{{9.28}} = \frac{{112}}{{252}}\)
\(\frac{7}{{12}} = \frac{{7.21}}{{12.21}} = \frac{{147}}{{252}}\)
2. a) Ta có BCNN(8, 24) = 24 nên:
\(\frac{3}{8} + \frac{5}{{24}} = \frac{{3.3}}{{8.3}} + \frac{5}{{24}} = \frac{9}{{24}} + \frac{5}{{24}} = \frac{{14}}{{24}} = \frac{7}{{12}}\)
b) Ta có BCNN(12, 16) = 48 nên:
\(\frac{7}{{16}} - \frac{5}{{12}} = \frac{{7.3}}{{16.3}} - \frac{{5.4}}{{12.4}} = \frac{{21}}{{48}} - \frac{{20}}{{48}} = \frac{1}{{48}}\).
a)
i.Ta có: BCNN(12, 30) = 60
60 : 12 = 5; 60 : 30 = 2. Do đó:
\(\frac{5}{{12}} = \frac{{5.5}}{{12.5}} = \frac{{25}}{{60}}\) và \(\frac{7}{{30}} = \frac{{7.2}}{{30.2}} = \frac{{14}}{{60}}.\)
ii.Ta có: BCNN(2, 5, 8) = 40
40 : 2 = 20; 40 : 5 = 8; 40 : 8 = 5. Do đó:
\(\frac{1}{2} = \frac{{1.20}}{{2.20}} = \frac{{20}}{{40}}\)
\(\frac{3}{5} = \frac{{3.8}}{{5.8}} = \frac{{24}}{{40}}\)
\(\frac{5}{8} = \frac{{5.5}}{{8.5}} = \frac{{25}}{{40}}\).
b)
i.Ta có: BCNN(6, 8) = 24
24 : 6 = 4; 24: 8 = 3. Do đó
\(\begin{array}{l}\frac{1}{6} + \frac{5}{8} = \frac{{1.4}}{{6.4}} + \frac{{5.3}}{{8.3}}\\ = \frac{4}{{24}} + \frac{{15}}{{24}} = \frac{{19}}{{24}}.\end{array}\)
ii. Ta có: BCNN(24, 30) = 120
120: 24 = 5; 120: 30 = 4. Do đó:
\(\begin{array}{l}\frac{{11}}{{24}} - \frac{7}{{30}} = \frac{{11.5}}{{24.5}} - \frac{{7.4}}{{30.4}}\\ = \frac{{55}}{{120}} - \frac{{28}}{{120}} = \frac{{27}}{{120}} = \frac{9}{{40}}\end{array}\)