K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2020

a) \(\frac{\left(\sqrt{3}-\sqrt{5}\right)^2+4\sqrt{15}}{\sqrt{3}+\sqrt{5}}-\sqrt{5}\)

= \(\frac{3-2\sqrt{15}+5+4\sqrt{15}}{\sqrt{3}+\sqrt{5}}-\sqrt{5}\)

=\(\frac{8+2\sqrt{15}-\sqrt{5}\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{3}+\sqrt{5}}\)

= \(\frac{8+2\sqrt{15}-\sqrt{15}-\sqrt{25}}{\sqrt{3}+\sqrt{5}}\)

= \(\frac{3+\sqrt{15}}{\sqrt{3}+\sqrt{5}}\)

= \(\frac{\sqrt{3}\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{3}+\sqrt{5}}\)

= \(\sqrt{3}\)

b) \(\frac{\left(\sqrt{2}+1\right)^2-4\sqrt{2}}{\sqrt{2}-1}.\left(\sqrt{2}+1\right)\)

= \(\frac{2+2\sqrt{2}+1-4\sqrt{2}}{\sqrt{2}-1}.\left(\sqrt{2}+1\right)\)

= \(\frac{\left(\sqrt{2}-1\right)^2.\left(\sqrt{2}+1\right)}{\sqrt{2}-1}\)

= \(\left(\sqrt{2}-1\right).\left(\sqrt{2}+1\right)\)

= 2 - 1

= 1

NV
19 tháng 4 2021

\(B=\dfrac{21}{2}\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}\right)^2-3\left(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}\right)^2-15\sqrt{15}\)

\(=\dfrac{21}{2}\left(\sqrt{3}+1+\sqrt{5}-1\right)^2-3\left(\sqrt{3}-1+\sqrt{5}+1\right)^2-15\sqrt{15}\)

\(=\dfrac{21}{2}\left(\sqrt{3}+\sqrt{5}\right)^2-3\left(\sqrt{3}+\sqrt{5}\right)^2-15\sqrt{15}\)

\(=\dfrac{15}{2}\left(8+2\sqrt{15}\right)-15\sqrt{15}\)

\(=60+15\sqrt{15}-15\sqrt{15}=60\)

19 tháng 10 2019

a, = \(\frac{\sqrt{15}}{10}\) + \(\frac{\sqrt{15}}{30}\) - \(\frac{2\sqrt{15}}{15}\)

= \(\sqrt{15}\left(\frac{1}{10}+\frac{1}{30}-\frac{2}{15}\right)\)

= \(\sqrt{15}.0\)

= 0

b, = \(\left(\frac{\sqrt{5}+\sqrt{3}}{5-3}+\frac{\sqrt{5}-\sqrt{3}}{5-3}\right).\sqrt{5}\)

= \(\frac{\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}}{2}.\sqrt{5}\)

= \(\frac{2\sqrt{5}}{2}.\sqrt{5}\)

= \(\sqrt{5}.\sqrt{5}\)

= 5

c, = \(\frac{5\sqrt{3}}{\sqrt{15}}+\frac{3\sqrt{5}}{\sqrt{15}}\)

= \(\sqrt{5}+\sqrt{3}\)

d, Mình sửa lại đề bài cho bạn : \(\left(2+\sqrt{5}\right)^2-\left(2-\sqrt{5}\right)^2\)

= \(\left(2+\sqrt{5}-2+\sqrt{5}\right)\left(2+\sqrt{5}+2-\sqrt{5}\right)\)

= \(2\sqrt{5}.4\)

= \(8\sqrt{5}\)

e, = \(\frac{4\sqrt{3}}{3}+15\sqrt{3}-3\sqrt{3}-\frac{20\sqrt{3}}{3}\)

= \(\sqrt{3}.\left(\frac{4}{3}+15-3-\frac{20}{3}\right)\)

= \(\sqrt{3}.\frac{20}{3}\)

= \(\frac{20\sqrt{3}}{3}\)

19 tháng 10 2019

a, 320+160−2115

b, (15−3+15+3).5

c, (53+35):15

d, (2+5)2−(2+5)2

e, 1348+375−27−10113

23 tháng 8 2023

a) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\)

\(=\left[-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right]\cdot\left(\sqrt{2}-\sqrt{5}\right)\)

\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)

\(=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)

\(=-\left(2-5\right)\)

\(=-\left(-3\right)\)

\(=3\)

b) Ta có:

\(x^2-x\sqrt{3}+1\) 

\(=x^2-2\cdot\dfrac{\sqrt{3}}{2}\cdot x+\left(\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)

\(=\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)

Mà: \(\left(x-\dfrac{\sqrt{3}}{2}\right)^2\ge0\forall x\) nên

\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)

Dấu "=" xảy ra:

\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow x=\dfrac{\sqrt{3}}{2}\)

Vậy: GTNN của biểu thức là \(\dfrac{1}{4}\) tại \(x=\dfrac{\sqrt{3}}{2}\)

23 tháng 8 2023

a)

\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\\ =\left(-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =\left(-\sqrt{2}-\sqrt{5}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}^2-\sqrt{5}^2\right)\\ =-\left(2-5\right)\\ =-\left(-3\right)\\ =3\)