Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{\left(\sqrt{3}-\sqrt{5}\right)^2+4\sqrt{15}}{\sqrt{3}+\sqrt{5}}-\sqrt{5}\)
= \(\frac{3-2\sqrt{15}+5+4\sqrt{15}}{\sqrt{3}+\sqrt{5}}-\sqrt{5}\)
=\(\frac{8+2\sqrt{15}-\sqrt{5}\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{3}+\sqrt{5}}\)
= \(\frac{8+2\sqrt{15}-\sqrt{15}-\sqrt{25}}{\sqrt{3}+\sqrt{5}}\)
= \(\frac{3+\sqrt{15}}{\sqrt{3}+\sqrt{5}}\)
= \(\frac{\sqrt{3}\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{3}+\sqrt{5}}\)
= \(\sqrt{3}\)
b) \(\frac{\left(\sqrt{2}+1\right)^2-4\sqrt{2}}{\sqrt{2}-1}.\left(\sqrt{2}+1\right)\)
= \(\frac{2+2\sqrt{2}+1-4\sqrt{2}}{\sqrt{2}-1}.\left(\sqrt{2}+1\right)\)
= \(\frac{\left(\sqrt{2}-1\right)^2.\left(\sqrt{2}+1\right)}{\sqrt{2}-1}\)
= \(\left(\sqrt{2}-1\right).\left(\sqrt{2}+1\right)\)
= 2 - 1
= 1
\(B=\dfrac{21}{2}\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}\right)^2-3\left(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}\right)^2-15\sqrt{15}\)
\(=\dfrac{21}{2}\left(\sqrt{3}+1+\sqrt{5}-1\right)^2-3\left(\sqrt{3}-1+\sqrt{5}+1\right)^2-15\sqrt{15}\)
\(=\dfrac{21}{2}\left(\sqrt{3}+\sqrt{5}\right)^2-3\left(\sqrt{3}+\sqrt{5}\right)^2-15\sqrt{15}\)
\(=\dfrac{15}{2}\left(8+2\sqrt{15}\right)-15\sqrt{15}\)
\(=60+15\sqrt{15}-15\sqrt{15}=60\)
a, = \(\frac{\sqrt{15}}{10}\) + \(\frac{\sqrt{15}}{30}\) - \(\frac{2\sqrt{15}}{15}\)
= \(\sqrt{15}\left(\frac{1}{10}+\frac{1}{30}-\frac{2}{15}\right)\)
= \(\sqrt{15}.0\)
= 0
b, = \(\left(\frac{\sqrt{5}+\sqrt{3}}{5-3}+\frac{\sqrt{5}-\sqrt{3}}{5-3}\right).\sqrt{5}\)
= \(\frac{\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}}{2}.\sqrt{5}\)
= \(\frac{2\sqrt{5}}{2}.\sqrt{5}\)
= \(\sqrt{5}.\sqrt{5}\)
= 5
c, = \(\frac{5\sqrt{3}}{\sqrt{15}}+\frac{3\sqrt{5}}{\sqrt{15}}\)
= \(\sqrt{5}+\sqrt{3}\)
d, Mình sửa lại đề bài cho bạn : \(\left(2+\sqrt{5}\right)^2-\left(2-\sqrt{5}\right)^2\)
= \(\left(2+\sqrt{5}-2+\sqrt{5}\right)\left(2+\sqrt{5}+2-\sqrt{5}\right)\)
= \(2\sqrt{5}.4\)
= \(8\sqrt{5}\)
e, = \(\frac{4\sqrt{3}}{3}+15\sqrt{3}-3\sqrt{3}-\frac{20\sqrt{3}}{3}\)
= \(\sqrt{3}.\left(\frac{4}{3}+15-3-\frac{20}{3}\right)\)
= \(\sqrt{3}.\frac{20}{3}\)
= \(\frac{20\sqrt{3}}{3}\)
a, 320+160−2115
b, (15−3+15+3).5
c, (53+35):15
d, (2+5)2−(2+5)2
e, 1348+375−27−10113
a) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\)
\(=\left[-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right]\cdot\left(\sqrt{2}-\sqrt{5}\right)\)
\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)
\(=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)
\(=-\left(2-5\right)\)
\(=-\left(-3\right)\)
\(=3\)
b) Ta có:
\(x^2-x\sqrt{3}+1\)
\(=x^2-2\cdot\dfrac{\sqrt{3}}{2}\cdot x+\left(\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)
\(=\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)
Mà: \(\left(x-\dfrac{\sqrt{3}}{2}\right)^2\ge0\forall x\) nên
\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)
Dấu "=" xảy ra:
\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{\sqrt{3}}{2}\)
Vậy: GTNN của biểu thức là \(\dfrac{1}{4}\) tại \(x=\dfrac{\sqrt{3}}{2}\)
a)
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\\ =\left(-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =\left(-\sqrt{2}-\sqrt{5}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}^2-\sqrt{5}^2\right)\\ =-\left(2-5\right)\\ =-\left(-3\right)\\ =3\)