Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\dfrac{2}{\sin2x}=2\)
\(\Leftrightarrow\sin2x=1\)
\(\Leftrightarrow2x=\dfrac{\Pi}{2}+k2\Pi\)
hay \(x=\dfrac{\Pi}{4}+k\Pi\)
a: \(\Leftrightarrow1-cos^4x-cos^2x=1\)
\(\Leftrightarrow cos^2x\left(cos^2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\\cosx=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\x=k2\Pi\\x=\Pi+k2\Pi\end{matrix}\right.\)
b: \(\Leftrightarrow3\left(1+\tan^2x\right)+2\sqrt{3}tanx-6=0\)
\(\Leftrightarrow3\cdot tan^2x+2\sqrt{3}\cdot tanx-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\dfrac{\sqrt{3}}{3}\\tanx=-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{6}+k\Pi\\x=-\dfrac{\Pi}{3}+k\Pi\end{matrix}\right.\)
c.
ĐLXĐ: \(x\ge-\dfrac{1}{3}\)
\(-\left(3x+1\right)+\sqrt{3x+1}+4x^2-10x+6=0\)
Đặt \(\sqrt{3x+1}=t\ge0\)
\(\Rightarrow-t^2+t+4x^2-10x+6=0\)
\(\Delta=1+4\left(4x^2-10x+6\right)=\left(4x-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+4x-5}{-2}=3-2x\\t=\dfrac{-1-4x+5}{-2}=2x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+1}=3-2x\left(x\le\dfrac{3}{2}\right)\\\sqrt{3x-1}=2x-2\left(x\ge1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=4x^2-12x+9\left(x\le\dfrac{3}{2}\right)\\3x-1=4x^2-8x+4\left(x\ge1\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
a.
ĐKXĐ: \(x\ge-\dfrac{5}{4}\)
\(\Leftrightarrow4x^2-12x-2-2\sqrt{4x+5}=0\)
\(\Leftrightarrow\left(4x^2-8x+4\right)-\left(4x+5+2\sqrt{4x+5}+1\right)=0\)
\(\Leftrightarrow\left(2x-2\right)^2-\left(\sqrt{4x+5}+1\right)^2=0\)
\(\Leftrightarrow\left(2x-2-\sqrt{4x+5}-1\right)\left(2x-2+\sqrt{4x+5}+1\right)=0\)
\(\Leftrightarrow\left(2x-3-\sqrt{4x+5}\right)\left(2x-1+\sqrt{4x+5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+5}=2x-3\left(x\ge\dfrac{3}{2}\right)\\\sqrt{4x+5}=1-2x\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+5=4x^2-12x+9\left(x\ge\dfrac{3}{2}\right)\\4x+5=4x^2-4x+1\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
1.
\(\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+5cosx+3=0\)
\(\Leftrightarrow2cos^2x-1+5cosx+3=0\)
\(\Leftrightarrow2cos^2x+5cosx+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-\frac{1}{2}\\cosx=-2\left(ktm\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
2.
\(3\left(1-sin^2x\right)+\left(1-sin^2x\right)sinx=8\left(1+sinx\right)\)
\(\Leftrightarrow\left(1+sinx\right)\left(3-3sinx\right)+\left(1+sinx\right)\left(sinx-sin^2x\right)=8\left(1+sinx\right)\)
\(\Leftrightarrow\left(1+sinx\right)\left(3-3sinx+sinx-sin^2x-8\right)=0\)
\(\Leftrightarrow\left(1+sinx\right)\left(-sin^2x-2sinx-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\-sin^2x-2sinx-5=0\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
a)
\(4\sin (3x+\frac{\pi}{3})-2=0\Leftrightarrow \sin (3x+\frac{\pi}{3})=\frac{1}{2}=\sin (\frac{\pi}{6})\)
\(\Rightarrow \left[\begin{matrix} 3x+\frac{\pi}{3}=\frac{\pi}{6}+2k\pi \\ 3x+\frac{\pi}{3}=\pi-\frac{\pi}{6}+2k\pi\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x=\frac{-\pi}{18}+\frac{2\pi}{3}\\ x=\frac{\pi}{6}+\frac{2\pi}{3}\end{matrix}\right.\) (k nguyên)
c)
\(\sin (x+\frac{x}{4})-1=0\Leftrightarrow \sin (\frac{5}{4}x)=1=\sin (\frac{\pi}{2})\)
\(\Rightarrow \frac{5}{4}x=\frac{\pi}{2}+2k\pi\Rightarrow x=\frac{2}{5}\pi+\frac{8}{5}k\pi \) (k nguyên)
d)
\(2\sin (2x+70^0)+1=0\Leftrightarrow \sin (2x+\frac{7}{18}\pi)=-\frac{1}{2}=\sin (\frac{-\pi}{6})\)
\(\Rightarrow \left[\begin{matrix} 2x+\frac{7}{18}\pi=\frac{-\pi}{6}+2k\pi\\ 2x+\frac{7}{18}\pi=\frac{7}{6}\pi+2k\pi\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x=\frac{-5\pi}{18}+k\pi\\ x=\frac{7}{18}\pi+k\pi\end{matrix}\right.\)
f)
\(\cos 2x-\cos 4x=0\)
\(\Leftrightarrow \cos 2x=\cos 4x\Rightarrow \left[\begin{matrix} 4x=2x+2k\pi\\ 4x=-2x+2k\pi\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=k\pi\\ x=\frac{k}{3}\pi \end{matrix}\right.\) ( k nguyên)
b,e,g bạn xem lại đề, đơn vị không thống nhất.
a: \(\Leftrightarrow\dfrac{2}{\sin2x}=2\)
\(\Leftrightarrow\sin2x=1\)
\(\Leftrightarrow2x=\dfrac{\Pi}{2}+k2\Pi\)
hay
b: \(\Leftrightarrow3\cdot tan^4x+3tan^2x-tan^2x-1=0\)
\(\Leftrightarrow3tan^2x-1=0\)
\(\Leftrightarrow tan^2x=\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(\dfrac{1}{\sqrt{3}}\right)+k\Pi=\dfrac{\Pi}{6}+k\Pi\\x=-\dfrac{\Pi}{6}+k\Pi\end{matrix}\right.\)