K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

Hàm số  y = log 2 x + 1 - 1  xác định kh

Chọn C.

22 tháng 10 2018

Đáp án D

Tại -1 hàm số không xác định nên không nghịch biến trên ( - ∞ ; 3 )  

31 tháng 7 2018

Đáp án D

Khẳng định sai là “Hàm số nghịch biến trên khoảng − ∞ ; 1 ” do hàm số không xác định tại  x = - 2

14 tháng 3 2018

Chọn D.

Phương pháp: Dưới mẫu là biểu thức chứa căn bậc hai nên để hàm số xác định trên ℝ  thì biểu thức trong căn bậc hai luôn dương.

Cách giải: Để hàm số đã cho xác định trên  thì 

13 tháng 12 2017

Đáp án A

PT có hai nghiệm thực phân biệt  ⇔ m - 1 < 0 m - 1 > 4 ⇔ m < 1 m > 5

16 tháng 12 2017

Đáp án D

f x = 2 x − 1 x + 1 f ' x = 2.1 − − 1 .1 x + 1 2 = 3 x + 1 2

7 tháng 6 2019

Đáp án D

Ta có y ' = f 1 - x + 2018 x + 2019 ' = 1 - x ' . f ' 1 - x + 2018 = - f ' 1 - x + 2018  

= - x 3 - x . g 1 - x - 2018 + 2018 = - x 3 - x . g 1 - x  mà  g 1 - x < 0 ; ∀ x ∈ ℝ

Nên y ' < 0 ⇔ - x 3 - x . g 1 - x < 0 ⇔ x 3 - x . g 1 - x > 0 ⇔ x 3 - x < 0 ⇔ [ x > 3 x < 0  

Khi đó, hàm số y = f 1 - x + 2018 x + 2019  nghịch biến trên khoảng  3 ; + ∞

31 tháng 7 2017

Đáp án C

Lời giải trên là sai. Cách làm lời giải này chỉ đúng đối với bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số trên một đoạn .

Để giải bài toán này, ta lập bảng biến thiên của hàm số y = 2 x 4 − 4 x 2 + 3  trên R

* Bước 1: Tập xác định D = ℝ . Đạo hàm  y ' = 8 x 3 − 8 x   .

* Bước 2: Cho   y ' = 0 tìm x = 0 ; x = − 1 ; x = 1 .

* Bước 3: Ta có bảng biến thiên sau:

Quan sát bảng biến thiên, ta thấy giá trị nhỏ nhất của hàm số là 1 và hàm số không có giá trị lớn nhất. Vậy lời giải trên sai từ bước 3.

10 tháng 5 2018

Đáp án D

Hàm số có tập xác định D = ℝ

⇔ x 2 − 2 m x + 4 > 0 , ∀ x ∈ ℝ

⇔ Δ ' < 0 ⇔ m 2 − 4 < 0 ⇔ − 2 < m < 2

26 tháng 11 2017

Đáp án B