Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(A=\dfrac{1}{2}.\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}......\dfrac{4064256}{2015.2017}\\ =\dfrac{1.2.2.3.3.....2016.2016}{2.1.3.2.4.3.5....2015.2017}\\ =\dfrac{\left(2.3.4.....2016\right)}{\left(1.2.3.4....2015\right)}.\dfrac{\left(2.3.4....2016\right)}{\left(2.3.4.5....2017\right)}\\ =2016.\dfrac{1}{2017}=\dfrac{2016}{2017}\)
2) a)
Ta có : \(\left(2x-\dfrac{1}{6}\right)^2+\left|3y+12\right|\ge0\) \(\forall x,y\)
Mà \(\left(2x-\dfrac{1}{6}\right)^2+\left|3y+12\right|=0\) ( theo đề ra)
\(\)\(\Rightarrow\left\{{}\begin{matrix}\left(2x-\dfrac{1}{6}\right)^2=0\\\left|3y+12\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{12}\\y=-4\end{matrix}\right.\)
a/ \(x=\dfrac{-5}{12}\)
b/ \(x\approx-1,9526\)
c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)
d/ \(x=\dfrac{-20}{13}\)
Bạn Kim Tuyến làm sai rùi , mk sửa lại :
a) 4x2 - 4x + 1 > 9
⇔ 4x2 - 4x - 8 > 0
⇔4x2 + 4x - 8x - 8 > 0
⇔ 4x( x + 1) -8( x + 1) > 0
⇔ ( x + 1)( 4x - 8) > 0
⇔ ( x + 1)( x - 2) > 0
Lập bảng xét dấu , ta có :
Vậy, nghiệm của BPT : x < -1 hoặc : x > 2
b) ( x - 5)( 7 - 2x ) < 0
Lập bảng xét dấu :
Vậy , nghiệm của BPT : x < 7/2 hoặc x > 5
\(1,2\left(x-3\right)+1=2\left(x+1\right)-9\\ \Rightarrow2x-6+1=2x+2-9\\ \Rightarrow2x-5=2x-7\\ \Rightarrow-2=0\left(vô.lí\right)\)
\(2,\dfrac{5-x}{2}=\dfrac{3x-4}{6}\\ \Rightarrow30-6x=6x-8\\ \Rightarrow12x=38\\ \Rightarrow x=\dfrac{19}{6}\)
\(3,\left(x-1\right)^2+\left(x+2\right)\left(x-2\right)=\left(2x+1\right)\left(x-3\right)\\ \Rightarrow x^2-2x+1+x^2-4=2x^2-6x+x-3\\ \Rightarrow2x^2-2x-3=2x^2-5x-3\\ \Rightarrow3x=0\\ \Rightarrow x=0\)
\(4,\left(x+5\right)\left(x-1\right)-\left(x+1\right)\left(x+2\right)=1\\ \Rightarrow x^2+5x-x-5-x^2-2x-x-2=1\\ \\ \Rightarrow x-7=1\\ \Rightarrow x=8\)
\(5,\dfrac{6x-1}{15}-\dfrac{x}{5}=\dfrac{2x}{3}\\ \Rightarrow\dfrac{6x-1}{15}-\dfrac{3x}{15}=\dfrac{10x}{15}\\ \Rightarrow6x-1-3x=10x\\ \Rightarrow3x-1=10x\\ \Rightarrow7x=-1\\ \Rightarrow x=\dfrac{-1}{7}\)
\(6,\dfrac{5\left(x-2\right)}{2}-\dfrac{x+5}{3}=1-\dfrac{4\left(x-3\right)}{5}\\ \Rightarrow\dfrac{75\left(x-2\right)}{30}-\dfrac{10\left(x+5\right)}{30}=\dfrac{30}{30}-\dfrac{24\left(x-3\right)}{30}\\ \Rightarrow75\left(x-2\right)-10\left(x+5\right)=30-24\left(x-3\right)\\ \Rightarrow75x-150-10x-50=30-24x+72\\ \Rightarrow65x-200=102-24x\\ \Rightarrow89x=302\\ \Rightarrow x=\dfrac{320}{89}\)
\(\left(x-1\right)\left(-x+2\right)=0\Leftrightarrow x=1;x=2\)
\(\left(x+2\right)\left(x+1-x+3\right)=0\Leftrightarrow x=-2\)
\(\left(x-2\right)\left(x+3\right)-\left(x-2\right)\left(2x+5\right)=0\Leftrightarrow\left(x-2\right)\left(-x-2\right)=0\Leftrightarrow x=-2;x=2\)
\(i,\left(x-1\right)\left(x+3\right)-\left(x-1\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+3-2x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(-x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\\ k,\left(x+2\right)\left(x+1\right)-\left(x-3\right)\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x+1-x+3\right)=0\\ \Leftrightarrow4\left(x+2\right)=0\\ \Leftrightarrow x+2=0\\ \Leftrightarrow x=-2\\ l,\left(x-2\right)\left(x+3\right)=\left(x-2\right)\left(2x+5\right)\\ \Leftrightarrow\left(x-2\right)\left(2x+5\right)-\left(x-2\right)\left(x+3\right)=0\\ \Leftrightarrow\left(x-2\right)\left(2x+5-x-3\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)
\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)
\(\Leftrightarrow4x+4x>-1\)
\(\Leftrightarrow8x>-1\)
\(\Leftrightarrow x>-\frac{1}{8}\)
\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)
\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-6x^2< 1+3\)
\(\Leftrightarrow-2x^2< 4\)
\(\Leftrightarrow x^2>2\)
\(\Leftrightarrow x>\pm\sqrt{2}\)
Tìm x biết:
a) \(\left(2x-3\right).\left(3-x\right)\le0\)
b) \(\left(2x-3\right).\left(1-2x\right)>0\)
a) \(\left(2x-3\right).\left(3-x\right)\le0\)
Xét 2 trường hợp:
- TH1: \(\begin{cases}2x-3\le0\\3-x\ge0\end{cases}\)\(\Rightarrow\begin{cases}2x\le3\\3\ge x\end{cases}\)\(\Rightarrow\begin{cases}x\le\frac{3}{2}\\x\le3\end{cases}\)\(\Rightarrow x\le\frac{3}{2}\)
- TH2: \(\begin{cases}2x-3\ge0\\3-x\le0\end{cases}\)\(\Rightarrow\begin{cases}2x\ge3\\3\le x\end{cases}\)\(\Rightarrow\begin{cases}x\ge\frac{3}{2}\\x\ge3\end{cases}\)\(\Rightarrow x\ge3\)
Vậy \(\left[\begin{array}{nghiempt}x\le\frac{3}{2}\\x\ge3\end{array}\right.\) thỏa mãn đề bài
b) (2x - 3).(1 - 2x) > 0
=> 2x - 3 và 1 - 2x là 2 số cùng dấu
Xét 2 trường hợp
- TH1: \(\begin{cases}2x-3< 0\\1-2x< 0\end{cases}\)\(\Rightarrow\begin{cases}2x< 3\\1< 2x\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{3}{2}\\\frac{1}{2}< x\end{cases}\)\(\Rightarrow\frac{1}{2}< x< \frac{3}{2}\), thỏa mãn
- TH2: \(\begin{cases}2x-3>0\\1-2x>0\end{cases}\)\(\Rightarrow\begin{cases}2x>3\\1>2x\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{3}{2}\\\frac{1}{2}>x\end{cases}\)\(\Rightarrow\frac{1}{2}>x>\frac{3}{2}\), vô lý
Vẫy \(\frac{1}{2}< x< \frac{3}{2}\) thỏa mãn đề bài
:)))????