K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2019

Trong hình trên có 5 tam giác đồng dạng với nhau theo từng đôi một đó là: △ ABC;  △ HBA;  △ HAC;  △ KAH;  △ KHC.

13 tháng 6 2017

Các cặp tam giác đồng dạng với nhau theo thứ tự các đỉnh tương ứng và viết tỉ lệ thức giữa các cặp cạnh tương ứng của chúng:

- △ ABC đồng dạng  △ HBA. Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

- △ ABC đồng dạng  △ HAC. Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

- △ ABC đồngdạng  △ KHC. Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

- △ ABC đồng dạng  △ KAH. Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

- △ HBA đồng dạng  △ HAC. Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

- △ HBA đồng dạng  △ KHC. Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

- △ HBA đồng dạng  △ KAH. Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

-  △ HAC đồng dạng  △ KHC.Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

-  △ HAC đồng dạng  △ KAH. Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

- △ KHC đồngdạng △ KAH. Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có

\(\widehat{C}\) chung

Do đó: ΔABC\(\sim\)ΔHAC(g-g)

b) Xét tứ giác AKHI có

\(\widehat{KAI}=90^0\)

\(\widehat{HIA}=90^0\)

\(\widehat{HKA}=90^0\)

Do đó: AKHI là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HI là đường cao ứng với cạnh huyền AB, ta được:

\(AI\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HK là đường cao ứng với cạnh huyền AC, ta được:

\(AK\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

29 tháng 8 2023

xàm vãi câu a) có 1 góc mà g-g

 

30 tháng 9 2018

a) ΔABC Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔHBA vì Â = Ĥ = 90º, B̂ chung

ΔABC Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔHAC vì Â = Ĥ = 90º, Ĉ chung

ΔHBA Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔHAC vì cùng đồng dạng với ΔABC.

b) + ΔABC vuông tại A

⇒ BC2 = AB2 + AC2

(Theo định lý Pytago)

Giải bài 49 trang 84 SGK Toán 8 Tập 2 | Giải toán lớp 8

19 tháng 9 2018

Trong hình bên có 3 cặp tam giác đồng dạng là BHA và BAC; CHA và CAB; HAB và HCA.

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

\(\widehat{ACB}\) chung

Do đó: ΔABC đồng dạng với ΔHAC

b: Xét ΔKHB vuông tại K và ΔKAH vuông tại K có

\(\widehat{KHB}=\widehat{KAH}\left(=90^0-\widehat{B}\right)\)

Do đó: ΔKHB đồng dạng với ΔKAH

=>\(\dfrac{KH}{KA}=\dfrac{KB}{KH}\)

=>\(KH^2=KA\cdot KB\)

c: Ta có: ΔAHC vuông tại H

=>\(HC^2+HA^2=AC^2\)

=>\(HA^2=10^2-8^2=36\)

=>\(HA=\sqrt{36}=6\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(HB=\dfrac{6^2}{8}=4,5\left(cm\right)\)

BC=BH+CH

=4,5+8

=12,5(cm)

Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot12,5\cdot6=3\cdot12,5=37,5\left(cm^2\right)\)