K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

bai41

Ta có tgy =2/5 = 0,4 ⇒ tgy= tg21048′ ⇒ y= 21048′

x = 900 – 21048′ = 68012′

x – y = 68012′ -21048′ = 46024′

24 tháng 4 2017

tgy=25=0,4tgy=25=0,4 nên y ≈ 21°48’

Do đó: x = 90° - y ≈ 68°12’

Vậy: x – y ≈ 68°12’ - 21°48’ ≈ 46°24’



19 tháng 11 2017

Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Suy ra  y   =   21 ° 48 '

= >   x   =   90 °   -   y   =   68 ° 12 '  (x, y là hai góc phụ nhau)

Vậy  x   –   y   =   68 ° 12 '   -   21 ° 48 '   =   46 ° 24 '

10 tháng 2 2018

Ta có:

Suy ra y = 21o48'

=> x = 90o - y = 68o12' (x, y là hai góc phụ nhau)

 

Vậy x – y = 68o12' - 21o48' = 46o24'

25 tháng 7 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ BH ⊥ AC.

Trong tam giác vuông ABH, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ BH vuông góc với AC

Xét ΔABH vuông tại H có \(BH=AB\cdot\sin A\simeq1,7101\left(cm\right)\)

\(S_{ABC}=\dfrac{BH\cdot AC}{2}=6.8404\left(cm^2\right)\)

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có \(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}=53^0\)

=>\(\widehat{C}=37^0\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=4,8(cm)

20 tháng 5 2019

bai-98-trang-122-sach-bai-tap-toan-9-tap-1-3.PNG (292×165)

a. Ta có: AB2 = 62 = 36

AC2 = 4,52 = 20,25

BC2 = 7,52 = 56,25

Vì AB2 + AC2 = 36 + 20,25 = 56,25 = BC2 nên tam giác ABC vuông tại A (theo định lí đảo Pi-ta-go)

Kẻ AH ⊥ BC

Ta có: AH.BC = AB.AC

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 b. Tam giác ABC và tam giác MBC có chung cạnh đáy BC, đồng thời SABC = SMBC nên khoảng cách từ M đến BC bằng khoảng cách từ A đến BC. Vậy M thay đổi cách BC một khoảng bằng AH nên M nằm trên hai đường thẳng x và y song song với BC cách BC một khoảng bằng AH.
5 tháng 7 2021

Có \(\widehat{B}=180^0-105^0-30^0=45^0\)

Kẻ AH vuông góc với BC

 \(\Rightarrow\Delta ABH\) là tam giác vuông cân tại A

\(\Rightarrow AH=BH\)

Có \(tanC=\dfrac{AH}{HC}\Leftrightarrow HC=\dfrac{AH}{tan30^0}=\sqrt{3}AH\)

\(\Rightarrow BH+CH=AH+\sqrt{3}AH\Leftrightarrow BC=\left(1+\sqrt{3}\right)AH\)\(\Leftrightarrow AH=\dfrac{BC}{1+\sqrt{3}}=\dfrac{2}{1+\sqrt{3}}\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.\dfrac{2}{1+\sqrt{3}}.2=\dfrac{2}{1+\sqrt{3}}\) (cm2)

Vậy...