Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A tính BC=5cm.
Theo hệ thức lượng trong tam giác vuông ABC tính AH=2,4cm.
AM là trung tuyến tam giác ABC vuông tại A nên AM=BC/2=5/2=2,5cm.
Áp dụng định lýPy-ta-go vào tam giác AHM vuông tại H tính HM=0,7cm
Áp dụng định lý Pytago trong tam giác vuông: ABC :
Áp dụng hệ thức lượng trong tam giác vuông ABC:
M là trung điểm củaBC
Vậy HM = BM – BH = 7 10 (cm)
Đáp án cần chọn là: A
\(HC=\dfrac{3^2}{4}=2.25\left(cm\right)\)
BC=HB+HC=6,25(cm)
AM=BC/2=3,125(cm)
\(AB=\sqrt{4\cdot6.25}=5\left(cm\right)\)
\(AC=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)
+ ) áp dụng định lí Pytago trong tam giác vuông \(ABH\) vuông tại \(H\) , ta có :
\(AB^2=AH^2+HB^2=3^2+4^2=25\Rightarrow AB=5\left(cm\right)\)
+ ) áp dụng hệ thức về cạnh và đường cao trong tam giác vuông \(ABC\) với \(AH\) là đường cao , ta có :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}\)
\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}=\dfrac{16}{225}\)
\(\Rightarrow AC=\dfrac{15}{4}\left(cm\right)\)
+ ) áp dụng định lí Pytago trong tam giác vuông \(ABC\) vuông tại \(A\) , ta có :
\(BC^2=AB^2+AC^2=5^2+\left(\dfrac{15}{4}\right)^2=\dfrac{625}{16}\)
\(\Rightarrow BC=\dfrac{25}{4}\left(cm\right)\)
+ ) tam giác \(ABC\) vuông tại \(A\) có trung tuyến \(AM\) nên ta có :
\(AM=\dfrac{1}{2}BC=\dfrac{25}{8}\left(cm\right)\)
+) Áp dụng định lý Pytago trong tam giác vuông ABH vuông tại H ta có:
+) Áp dụng hệ thức về cạnh và đường cao trng tam giác vuông ABC với AH là đường cao ta có:
+) Áp dụng định lý Pytago trong tam giác vuông ABC vuông tại A ta có:
+) Tam giác ABC vuông tại A có trung tuyến AM nên ta có:
+) Diện tích tam giác ABC với AH là đường cao ta có:
Vậy AB = 5cm, AC = 15 4 cm; AM = 25 8 cm; S ∆ A B C = 75 8 c m 2 .
Đáp án cần chọn là: A
BH = 18 cm ; MH = 7 cm ; MC = 25 cm ; AH = 24 cm. Chỉ có đáp án thôi nha!
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
hay AH=2,4(cm)
Xét tứ giác AMHN có
\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật
Suy ra: AH=MN=2,4(cm)
Xét tam giác ABC vuông tại A
\(BC=\sqrt{AB+AC}=\sqrt{3^2+4^2}=5\) (đ/l py - ta - go )
A/d hệ thức lượng, ta có
\(AB^2=BC.BH\)Hay \(9=5.BC\)
=> BC = 1,8
=> CH = 3,2
\(AH=\sqrt{BH.CH}=\sqrt{1,8.3,2}=2,4\)
Mà \(AM=\frac{BC}{2}\)( Do AM là trung tuyến )
Nên => AM = 2,5
Xét tam giác AHM vuông tại H ( AH là đường cao )
\(HM=\sqrt{AM^2-AH^2}=\sqrt{2,5^2-2,4^2}=0,7\)
Vậy .....