Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của nguyen anh ngoc ly - Toán lớp 7 - Học toán với OnlineMath
a, Xét ∆AHC và ∆DHC có:
+CH chung
+\(\widehat{CHA}=\widehat{CHD}\left(=90^o\right)\)
+HA=HC(gt)
\(\Rightarrow\)∆HCA=∆HCD(ch-cgv)
a/ Xét tg vuông AHC và tg vuông DHC có
HC chung
HA = HD (gt)
=> tg AHC = tg DHC (Hai tg vuông có 2 cạnh góc vuông bằng nhau)
b/ K là giao của AE và CD
Xét tg vuông ABC có
\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với góc \(\widehat{ABC}\) ) (1)
tg AHC = tg DHC (cmt) => \(\widehat{DCH}=\widehat{ACB}\) (2)
Xét tg vuông ABH và tg vuông AEH có
AH chung; HB = HE (gt) => tg ABH = tg AEH (hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{BAH}=\widehat{EAH}\) (3)
Từ (1) (2) (3) => \(\widehat{EAH}=\widehat{DCH}\) (4)
Xét tg vuông AHE có
\(\widehat{EAH}+\widehat{AEH}=90^o\) (5)
Mà \(\widehat{AEH}=\widehat{CEK}\) (góc đối đỉnh) (6)
Từ (4) (5) (6) \(\Rightarrow\widehat{DCH}+\widehat{CEK}=90^o\Rightarrow\widehat{AKC}=90^o\)
\(\Rightarrow AK\perp CD\) mà \(CH\perp AD\) => E là trực tâm của tg ADC
c/
tg ABH = tg AEH (cmt) => AB = AE
tg AHC = tg DHC (cmt) => AC = CD
Xét tg ABC có
\(AB+AC>BC\) (trong tg tổng độ dài 2 cạnh lớn hớn độ dài cạnh còn lại)
\(\Rightarrow AE+CD>BC\)
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
b: Xét tứ giác ABDK có
H là trung điểm chung của AD và BK
AD vuông góc BK tại H
Do đó: ABDK là hình thoi
=>AK//BD
c: ABDK là hình thoi
=>AB=BD
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
b: Xét tứ giác ABDK có
H là trung điểm chung của AD và BK
=>ABDK là hình bình hành
Hình bình hành ABDK có AD\(\perp\)BK
nên ABDK là hình thoi