K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2015

a, áp dụng hệ thức lượng cho các tam giác vuông AHB,AHC, ABC có các đường cao ta có:\(BE=\frac{BH^2}{AB};CF=\frac{HC^2}{AC};BE.CF=\frac{BH^2.HC^2}{AB.AC}=\frac{AH^4}{AB.AC}\)\(BC=\frac{AB^2}{AH}\)

\(BC.CE.CF=\frac{AB^2}{AH}.\frac{AH^4}{AB.AC}=\frac{AH^3.AB}{AC}=AH^3.\frac{AB}{AC}\).

tam giác này người ta k cho cân => AB/AC không =1 đc => BC.BE.CF khác AH^3

\(EB=\frac{BH^2}{AB};FC=\frac{HC^2}{AC}\Rightarrow\frac{EB}{FC}=\frac{BH^2.AC}{AB.HC^2}\). VỚI TAM GIÁC ABC TA CÓ: \(BH=\frac{AB^2}{BC}\Rightarrow BH^2=\frac{AB^4}{BC}\Leftrightarrow HC^2=\frac{AC^4}{BC}\) => \(\frac{EB}{FC}=\frac{\frac{AB^4}{BC}.AC}{AB.\frac{AC^4}{BC}}=\frac{AB^4.AC.BC}{AB.AC^4.BC}=\frac{AB^3}{AC^3}\)

B) C/M TỨ GIÁC AEHF LÀ HÌNH CHỮ NHẬT => EF=AH(T/C) => EF LỚN NHẤT <=> AH LỚN NHẤT

TỪ A KẺ TRUNG TUYẾN AM. \(AH\le AM\) (ĐƯỜNG VUÔNG GÓC VÀ ĐƯỜNG XIÊN) => AH LỚN NHẤT KHI AH=AM <=> AH=1/2 BC=1/2a<=> EF LỚN NHẤT =1/2a (AM LÀ TRUNG TUYẾN CỦA TAM GIÁC VUÔNG => = 1/2 CẠNH HUYỀN)

TỪ CÁC CÔNG THỨC ĐÃ LẬP Ở TRÊN, S AEHF=AE.AF=\(\frac{AH^2}{AB}.\frac{AH^2}{AC}=\frac{AH^4}{AB.AC}=\frac{AH^4}{\sqrt{BH.BC.HC.BC}}=\frac{AH^4}{BC\sqrt{AH^2}}=\frac{AH^3}{BC}\)

CHỈ LÀM ĐC ĐẾN ĐÂY THÔI :-/ DÙ SAO CŨNG ĐC ÍT NHIỀU :)

20 tháng 12 2021

a: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

15 tháng 12 2022

giúp em với 

8 tháng 5 2016

a/ Xét tg HBA và tg ABC, có:

góc BHA = góc BAC = 90 độ

góc B chung

Suyra: tg HBA đồng dạng với tg ABC (g-g)

b/ Ta có tg ABC vuông tại A:

\(BC^2=AC^2+AB^2\)

\(BC^2=8^2+6^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\)(cm)

Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)

\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)

\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)