K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
20 tháng 12 2021
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
TS
8 tháng 5 2016
a/ Xét tg HBA và tg ABC, có:
góc BHA = góc BAC = 90 độ
góc B chung
Suyra: tg HBA đồng dạng với tg ABC (g-g)
b/ Ta có tg ABC vuông tại A:
\(BC^2=AC^2+AB^2\)
\(BC^2=8^2+6^2=100\)
\(\Rightarrow BC=\sqrt{100}=10\)(cm)
Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)
\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)
\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)
a, áp dụng hệ thức lượng cho các tam giác vuông AHB,AHC, ABC có các đường cao ta có:\(BE=\frac{BH^2}{AB};CF=\frac{HC^2}{AC};BE.CF=\frac{BH^2.HC^2}{AB.AC}=\frac{AH^4}{AB.AC}\); \(BC=\frac{AB^2}{AH}\)
\(BC.CE.CF=\frac{AB^2}{AH}.\frac{AH^4}{AB.AC}=\frac{AH^3.AB}{AC}=AH^3.\frac{AB}{AC}\).
tam giác này người ta k cho cân => AB/AC không =1 đc => BC.BE.CF khác AH^3
\(EB=\frac{BH^2}{AB};FC=\frac{HC^2}{AC}\Rightarrow\frac{EB}{FC}=\frac{BH^2.AC}{AB.HC^2}\). VỚI TAM GIÁC ABC TA CÓ: \(BH=\frac{AB^2}{BC}\Rightarrow BH^2=\frac{AB^4}{BC}\Leftrightarrow HC^2=\frac{AC^4}{BC}\) => \(\frac{EB}{FC}=\frac{\frac{AB^4}{BC}.AC}{AB.\frac{AC^4}{BC}}=\frac{AB^4.AC.BC}{AB.AC^4.BC}=\frac{AB^3}{AC^3}\)
B) C/M TỨ GIÁC AEHF LÀ HÌNH CHỮ NHẬT => EF=AH(T/C) => EF LỚN NHẤT <=> AH LỚN NHẤT
TỪ A KẺ TRUNG TUYẾN AM. \(AH\le AM\) (ĐƯỜNG VUÔNG GÓC VÀ ĐƯỜNG XIÊN) => AH LỚN NHẤT KHI AH=AM <=> AH=1/2 BC=1/2a<=> EF LỚN NHẤT =1/2a (AM LÀ TRUNG TUYẾN CỦA TAM GIÁC VUÔNG => = 1/2 CẠNH HUYỀN)
TỪ CÁC CÔNG THỨC ĐÃ LẬP Ở TRÊN, S AEHF=AE.AF=\(\frac{AH^2}{AB}.\frac{AH^2}{AC}=\frac{AH^4}{AB.AC}=\frac{AH^4}{\sqrt{BH.BC.HC.BC}}=\frac{AH^4}{BC\sqrt{AH^2}}=\frac{AH^3}{BC}\)
CHỈ LÀM ĐC ĐẾN ĐÂY THÔI :-/ DÙ SAO CŨNG ĐC ÍT NHIỀU :)