K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

Theo hệ quả định lí cô sin trong tam giác ta có:  cosB =   c 2 + ​ a 2 − b 2 2 c a

Từ  giả thiết: c = a. cosB nên: 

c = a . c 2 + a 2 − b 2 2. c a ⇒ c = c 2 + a 2 − b 2 2 c ⇒ 2 c 2 = c 2 + a 2 − b 2 ⇒ a 2 = b 2 + c 2

Do đó, tam giác ABC vuông tại A.

ĐÁP ÁN C

6 tháng 12 2021

c tam giác abc vuông tại c

 

Chọn C

22 tháng 8 2018

Chọn C.

Do tam giác GBC vuông tại G nên GB2 + GC2 = BC2

hay 

Mặt khác theo công thức đường trung tuyến ta có

Suy ra 

Suy ra: 4a2 + b2 + c2 = 9a2 hay 

 

5a2 = b2 + c2.

24 tháng 12 2019

Hình bình hành ABCD có hai đường chéo bằng nhau, nên nó là hình chữ nhật, tức là tam giác ABC vuông.

Chọn A.

19 tháng 1 2017

Nếu G là trong tâm tam giác ABC thì

G A → + ​   G B → + ​   G C → =    0 → ⇔ A G → + ​   B G → + ​   C G → =    0 → ⇔ A G → + ​   B G → + ​   C G → =    0 → = 0

Đáp án C

27 tháng 8 2017

7 tháng 3 2018

2 M A → + M B → = C A →   ⇔ 2 M A → + M B → = C M → + M A → .

⇔ M A → + M B → = −   M C →   ⇔ M A → + M B → + M C → = 0 → .   (*)

Đẳng thức (*) suy ra M là trọng tâm của tam giác  ABC.

Chọn D.

15 tháng 2 2019

Đáp án: D

a sai vì nếu tam giác ABC thỏa mãn AB + AC2 = BC2 thì tam giác ABC vuông tại A không phải vuông tại B.

b, c, d đúng.

10 tháng 10 2017

a.

Gọi (D):y=ax+b chứa điểm A, C

(D'):y=a'x+b' chứa điểm B, C

* Ta có: A thuộc (D) khi 1= 2a+b (1)

C thuộc (D) khi 4= 3a+b (2)

Giải hệ (1), (2) ta suy ra a=3 , b=-5

* Ta có: B thuộc (D') khi 3=6a'+b' (3)

C thuộc (D') khi 4=3a'+b' (4)

Giải hệ (3), (4) ta suy ra a=-1/3 , b= 5

Ta thấy: a.a' = 3.(-1/3)=-1

Suy ra (D) vuông góc (D') tại điểm chung C của của 2 cạnh (5)

Vậy tam giác ABC vuông tại C

Theo công thức tính cạnh của đoạn thẳng trong hệ trục tọa độ ta có:

AC=\(\sqrt{\left(x_A-x_C\right)^2+\left(y_A-y_C\right)^2}=\sqrt{\left(2-3\right)^2+\left(1-4\right)^2}\)\(=\sqrt{10}\)

BC=\(\sqrt{\left(x_B-x_C\right)^2+\left(y_B-y_C\right)^2}=\sqrt{\left(6-3\right)^2+\left(3-4\right)^2}\)\(=\sqrt{10}\)

Vậy AC=BC (6)

Từ (5) và (6) ta suy ra tam giác ABC vuông cân tại C

SABC=\(\dfrac{1}{2}\).AB.BC=\(\dfrac{1}{2}.\sqrt{10}.\sqrt{10}=\dfrac{1}{2}.10=\)5 (đvdt)

b. Làm tương tự câu a tìm độ dài các cạnh AB, BD, DA và tính diện tích bằng công thức SABD=\(\sqrt{p\left(p-AB\right)\left(p-BD\right)\left(p-DA\right)}\) với p là nửa chu vi tam giác ABD \(p=\dfrac{1}{2}\left(AB+BD+DA\right)\)

Tiếp tục dùng công thức SABD=\(=\dfrac{1}{2}.AB.BD.sinB\) các số liệu nêu trên đã có, chỉ cần thế vào là có góc B

Gọi I là tâm. Tìm độ dài bán kình bằng công thức SABD=\(\dfrac{AB.BD.DA}{4AI}\)

ta tìm được độ dài AI còn cách xác định tâm thì dựa vào giao điểm 2 đường thẳng (d) chứa đoạn AI và (d') chứa đoạn BI là xong