Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=25\)
Áp dụng HTL: \(BH=\dfrac{AB^2}{BC}=9\)
b, \(\sin\alpha+\cos\alpha=1,4\Leftrightarrow\left(\sin\alpha+\cos\alpha\right)^2=1,96\)
\(\Leftrightarrow\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cdot\cos\alpha=1,96\\ \Leftrightarrow\sin\alpha\cdot\cos\alpha=\dfrac{1,96-1}{2}=\dfrac{0,96}{2}=0,48\)
\(\sin^4\alpha+\cos^4\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2-2\sin^2\alpha\cdot\cos^2\alpha\\ =1^2+2\left(\sin\alpha\cdot\cos\alpha\right)^2=1+2\cdot\left(0,48\right)^2=1,4608\)
a: sin ACB=AH/AC
=>AH/AC=1/2
=>AH=4cm
b: sin ABC=2/3
=>AH/AB=2/3
=>AB=6cm
HB=căn 6^2-4^2=2căn 5cm
HC=căn 8^2-4^2=4căn 3cm
BC=HB+HC=2căn5+4căn3(cm)
S ABC=1/2*BA*BC*sinB
=1/2*1/2*6*(2căn5+4căn3)
=3(căn 5+2căn 3)
Bài 2:
b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)
\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)
\(=AH\cdot\dfrac{BC}{AH}=BC\)
Có:\(BH=\dfrac{AH}{tan\alpha}\)
\(CH=\dfrac{AH}{tan\beta}\)
\(\Rightarrow BH+CH=AH\left(\dfrac{1}{tan\alpha}+\dfrac{1}{tan\beta}\right)\)
\(\Rightarrow a=AH\left(\dfrac{1}{tan\alpha}+\dfrac{1}{tan\beta}\right)\)
\(\Leftrightarrow AH=\dfrac{a}{\dfrac{1}{tan\alpha}+\dfrac{1}{tan\beta}}\)
Vậy...