Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 tam giác BME và tam giác AHC
có \(\widehat{BME}=\widehat{AHC}=90^0\)
\(\widehat{ABC}chung\)
nên 2 tam giác BME và tam giác AHC đồng dạng với nhau
b)
xét tam giác ABH
có AE là phân giác của góc BAH
nên \(\widehat{MAE}=\widehat{HAE}\)
có \(\widehat{MAE}+\widehat{CAE}=90^0\)
\(\widehat{HAE}+\widehat{CEA}=90^0\)
suy ra \(\widehat{CAE}=\widehat{CEA}\)do đó tam giác AEc cân tại C
c)
xét tam giác AHC có
AD là tia phân giác của góc HAC
nên \(\frac{HD}{CD}=\frac{AH}{AC}\Rightarrow AH\cdot CD=DH\cdot AC\)
lại có AC = EC
nên \(AH\cdot CD=EC\cdot AC\)
d)
chứng minh tương tự câu b
ta có tam giác ABD cân tại B
suy ra AB = BD
mà AC = EC
nên AB + AC = BD + EC = BD + CD + ED = BC + DE
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
=>CA/CH=CB/CA
=>CA^2=CH*CB
b: BD là phân giác
=>BC/AB=DC/DA
Xét ΔHAC có DE//AH
nên EC/EH=DC/DA
=>BC/AB=EC/EH
=>AB/EH=BC/EC
c: AC=căn 20^2-12^2=16cm
DA/AB=DC/BC
=>DA/3=DC/5=(DA+DC)/(3+5)=16/8=2
=>DA=6cm; DC=10cm
S BAC=1/2*12*16=96cm2
S BAD=1/2*6*12=36cm2
=>S BDC=60cm2
a) BD=45/7 CD=60/7 DE36/7
b) ADB=162/7 BCD k có vì 3 điểm này thẳng hàng
a:
Ta có: DE\(\perp\)AC
AB\(\perp\)AC
Do đó: DE//AB
Xét ΔCAB có ED//AB
nên \(\dfrac{CE}{EA}=\dfrac{CD}{DB}\)
=>\(\dfrac{BD}{DC}=\dfrac{AE}{EC}\)
b: Xét ΔHBA vuông tại H và ΔEDC vuông tại E có
\(\widehat{EDC}=\widehat{HBA}\)(hai góc đồng vị, DE//AB)
Do đó: ΔHBA~ΔEDC
a: \(CB=\sqrt{9^2+12^2}=15\left(cm\right)\)
ADlà phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=15/7
=>BD=45/7cm; CD=60/7cm
b: Xét ΔABH vuông tại H và ΔCDE vuông tại E có
góc HAB=góc ECD
=>ΔABH đồng dạng với ΔCDE
ta có: góc BAD + góc DAC = 90 độ
góc ADH + góc HAD = 90 độ ( vì tam giác AHD vuông tại H )
mà DAC = HAD ( AD là tia phân giác)
suy ra góc BAD = góc BDA
vậy tam giác ABD là tam giác cân tại B
ta có : góc CAE + góc EAB = 90 độ
góc CEA + góc HAE = 90 độ (tam giác AEH vuông tại H)
mà EAB=HAE suy ra góc CAE = góc CEA
vậy tam giác ACE cân tại C
- Ta có : AB=BD ( tam giác ABD cân)
AC=CE( tam giác AEC cân )
suy ra AB+AC=BD+CE
=BE+ED+CD+ED
=BC+DE
I do not know