K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2016

ta có: góc BAD + góc DAC = 90 độ

         góc ADH + góc HAD = 90 độ ( vì tam giác AHD vuông tại H )

 mà DAC = HAD ( AD là tia phân giác)

suy ra góc BAD = góc BDA 

vậy tam giác ABD là tam giác cân tại B 

ta có : góc CAE + góc EAB = 90 độ

          góc CEA + góc HAE = 90 độ (tam giác AEH vuông tại H)

mà EAB=HAE suy ra góc CAE = góc CEA

vậy tam giác ACE cân tại C

- Ta có : AB=BD ( tam giác ABD cân)

             AC=CE( tam giác AEC cân )

suy ra AB+AC=BD+CE 

                     =BE+ED+CD+ED  

                      =BC+DE

1 tháng 10 2016

I do not know

20 tháng 5 2019

a) Xét 2 tam giác BME và tam giác AHC 

có \(\widehat{BME}=\widehat{AHC}=90^0\)

\(\widehat{ABC}chung\)

nên 2 tam giác BME và tam giác AHC đồng dạng với nhau

b)

xét tam giác ABH

có AE là phân giác của góc BAH

nên \(\widehat{MAE}=\widehat{HAE}\)

có \(\widehat{MAE}+\widehat{CAE}=90^0\)

\(\widehat{HAE}+\widehat{CEA}=90^0\)

suy ra \(\widehat{CAE}=\widehat{CEA}\)do đó tam giác AEc cân tại C

c)

xét tam giác AHC có 

AD là tia phân giác của góc HAC

nên \(\frac{HD}{CD}=\frac{AH}{AC}\Rightarrow AH\cdot CD=DH\cdot AC\)

lại có AC = EC

nên \(AH\cdot CD=EC\cdot AC\)

d)

chứng minh tương tự câu b

ta có tam giác ABD cân tại B

suy ra AB = BD

mà AC = EC

nên AB + AC  = BD + EC = BD + CD + ED = BC + DE

1 tháng 2 2016

câu 1: 

100 cm

 

15 tháng 2 2017

có ai giải được ko ngày mai dự giờ rồi. bài 2

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB

b: BD là phân giác

=>BC/AB=DC/DA

Xét ΔHAC có DE//AH

nên EC/EH=DC/DA

=>BC/AB=EC/EH

=>AB/EH=BC/EC

c: AC=căn 20^2-12^2=16cm

DA/AB=DC/BC

=>DA/3=DC/5=(DA+DC)/(3+5)=16/8=2

=>DA=6cm; DC=10cm

S BAC=1/2*12*16=96cm2

S BAD=1/2*6*12=36cm2

=>S BDC=60cm2

7 tháng 5 2017

a)   BD=45/7        CD=60/7       DE36/7

b)    ADB=162/7     BCD k có vì 3 điểm này thẳng hàng

7 tháng 5 2017

Thanks.

a:

Ta có: DE\(\perp\)AC

AB\(\perp\)AC

Do đó: DE//AB

Xét ΔCAB có ED//AB

nên \(\dfrac{CE}{EA}=\dfrac{CD}{DB}\)

=>\(\dfrac{BD}{DC}=\dfrac{AE}{EC}\)

b: Xét ΔHBA vuông tại H và ΔEDC vuông tại E có

\(\widehat{EDC}=\widehat{HBA}\)(hai góc đồng vị, DE//AB)

Do đó: ΔHBA~ΔEDC

a: \(CB=\sqrt{9^2+12^2}=15\left(cm\right)\)

ADlà phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=15/7

=>BD=45/7cm; CD=60/7cm

b: Xét ΔABH vuông tại H và ΔCDE vuông tại E có

góc HAB=góc ECD

=>ΔABH đồng dạng với ΔCDE