Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lý Pytagoo vào tam giác vuông ABC ta có:
BC2=AB2+AC2BC2=AB2+AC2
⇔⇔BC2=4,52+62=56,25BC2=4,52+62=56,25
⇔⇔BC=√56,25=7,5BC=56,25=7,5 cm
Xét ΔABCΔABCvà ΔDECΔDEC CÓ:
ˆBAC=ˆEDC=900BAC^=EDC^=900
ˆACBACB^ CHUNG
Suy ra: ΔABC ΔDECΔABC ΔDEC
⇒⇒BCEC=ACDCBCEC=ACDC ⇒⇒EC=BC.DCACEC=BC.DCAC
HAY EC=7,5×26=2,5EC=7,5×26=2,5
b) Áp dụng định lý Pytago vào tam giác vuông DEC ta có:
DE2=EC2−DC2DE2=EC2−DC2
⇔⇔DE2=2,52−22=2,25DE2=2,52−22=2,25
⇔⇔DE=√2,25=1,5DE=2,25=1,5
Vậy SDEC=DE.DC2=1,5×22=1,5SDEC=DE.DC2=1,5×22=1,5CM2
a) Áp dụng định lý Pytagoo vào tam giác vuông ABC ta có:
BC2=AB2+AC2BC2=AB2+AC2
⇔⇔BC2=4,52+62=56,25BC2=4,52+62=56,25
⇔⇔BC=√56,25=7,5BC=56,25=7,5 cm
Xét ΔABCΔABCvà ΔDECΔDEC CÓ:
ˆBAC=ˆEDC=900BAC^=EDC^=900
ˆACBACB^ CHUNG
Suy ra: ΔABC ΔDECΔABC ΔDEC
⇒⇒BCEC=ACDCBCEC=ACDC ⇒⇒EC=BC.DCACEC=BC.DCAC
HAY EC=7,5×26=2,5EC=7,5×26=2,5
b) Áp dụng định lý Pytago vào tam giác vuông DEC ta có:
DE2=EC2−DC2DE2=EC2−DC2
⇔⇔DE2=2,52−22=2,25DE2=2,52−22=2,25
⇔⇔DE=√2,25=1,5DE=2,25=1,5
Vậy SDEC=DE.DC2=1,5×22=1,5SDEC=DE.DC2=1,5×22=1,5CM2
a) Áp dụng định lý Pytagoo vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=4,5^2+6^2=56,25\)
\(\Leftrightarrow\)\(BC=\sqrt{56,25}=7,5\) cm
Xét \(\Delta ABC\)và \(\Delta DEC\) CÓ:
\(\widehat{BAC}=\widehat{EDC}=90^0\)
\(\widehat{ACB}\) CHUNG
Suy ra: \(\Delta ABC~\Delta DEC\)
\(\Rightarrow\)\(\frac{BC}{EC}=\frac{AC}{DC}\) \(\Rightarrow\)\(EC=\frac{BC.DC}{AC}\)
HAY \(EC=\frac{7,5\times2}{6}=2,5\)
b) Áp dụng định lý Pytago vào tam giác vuông DEC ta có:
\(DE^2=EC^2-DC^2\)
\(\Leftrightarrow\)\(DE^2=2,5^2-2^2=2,25\)
\(\Leftrightarrow\)\(DE=\sqrt{2,25}=1,5\)
Vậy \(S_{DEC}=\frac{DE.DC}{2}=\frac{1,5\times2}{2}=1,5\)CM2
\(\text{Xét}:\)\(\Delta CDE\)\(\text{và}\)\(\Delta CAB\)\(,\)\(\text{ta có:}\)
\(\widehat{C}\)\(:\)\(chung\)
\(\widehat{CDE}=\widehat{CAB}=90^o\)
\(\Rightarrow\Delta CDE\text{∽}\Delta CAB\left(g-g\right)\)
\(\Rightarrow\frac{CD}{DE}=\frac{CA}{AB}\)\(\text{hay}\)\(\frac{2}{DE}=\frac{4}{6}\)
\(\Rightarrow DE=\left(6.2\right):4=3\left(cm\right)\)
a: Xét ΔABC có \(AB^2+AC^2=BC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A và ΔMDC vuông tại M có
\(\widehat{MCD}\) chung
Do đó: ΔABC~ΔMDC
b: Ta có: M là trung điểm của BC
=>\(MB=MC=\dfrac{BC}{2}=15\left(cm\right)\)
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot15\cdot20=150\left(cm^2\right)\)
Ta có; ΔABC~ΔMDC
=>\(\dfrac{AB}{MD}=\dfrac{BC}{DC}=\dfrac{AC}{MC}\)
=>\(\dfrac{18}{MD}=\dfrac{30}{DC}=\dfrac{24}{15}=\dfrac{8}{5}\)
=>\(MD=18\cdot\dfrac{5}{8}=\dfrac{90}{8}=\dfrac{45}{4}\left(cm\right);DC=30\cdot\dfrac{5}{8}=\dfrac{150}{8}=\dfrac{75}{4}\left(cm\right)\)
c: Xét ΔBME vuông tại M và ΔBAC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔBME~ΔBAC
=>\(\dfrac{BE}{BC}=\dfrac{BM}{BA}\)
=>\(\dfrac{BE}{30}=\dfrac{15}{18}=\dfrac{5}{6}\)
=>BE=25(cm)
Ta có: BE=BA+AE
=>AE+18=25
=>AE=7(cm)
ΔCAE vuông tại A
=>\(CA^2+AE^2=CE^2\)
=>\(CE^2=7^2+24^2=625\)
=>\(CE=\sqrt{625}=25\left(cm\right)\)