K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2019

Diện tích của tam giác tỉ lệ thuận với chiều cao.

 

a: 

AH12345101520
S246810203040

b: 

c: Diện tích tam giác tỉ lệ thuận với chiều cao

25 tháng 1 2019

Điền vào ô trống

Độ dài AH (cm) 1 2 3 4 5 10 15 20
S A B C ( c m 2 ) 2 4 6 8 10 20 30 40
1 tháng 5 2017

Gọi h (AH) là đường cao của \(\Delta ABC\) thì h là hằng số không đổi và cạnh đáy BC bằng a cố định .

Ta có : \(S_{ABC}=\dfrac{1}{2}BC.AH=\dfrac{1}{2}a.h\) không đổi .

Vậy diện tích tam giác ABC luôn không đồi nếu có đáy BC cố định và đỉnh A di động trên 1 đường thẳng d cố định song song với đường thẳng BC .

8 tháng 10 2016

Kẻ AK vuông góc BC. Gọi G là trọng tâm tam giác ABC và N là trung điểm BC. Kẻ GI vuông góc với AK 

\(\Rightarrow\)GI // BC

\(\Rightarrow\frac{IK}{AK}=\frac{IK}{3}=\frac{GN}{AN}=\frac{1}{3}\)

\(\Rightarrow IK=1\)

Mà IK chính là khoản cách từ G đến BC

Vậy trọng tâm G nằm trên đường thẳng song song với BC và cách BC 1 khoản là 1 cm

8 tháng 10 2016

xin lỗi

mik dở hình học nhất

ai dở thì tích mik nha

2 tháng 11 2016

A B C d h H a

Gọi h là đường cao của tam giác ABC thì h là hằng số không đổi và cạnh đấy BC = a cố định.

Ta có \(S_{ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}ah\) không đổi.

Vậy có đpcm

28 tháng 3 2018

Đường thẳng d cố định song song với đường thẳng BC cố định nên khoảng cách hai đường thẳng d và BC là không đổi.

Tam giác ABC có cạnh đáy BC không đổi, chiều cao AH là khoảng cách giữa 2 đường thẳng song song không đổi.

Vậy điểm A thay đổi trên đường thẳng d // AB thì diện tích tam giác ABC không đổi.

8 tháng 10 2019

Vì ADHE là hình chữ nhật nên OD = OH

Suy ra, tam giác ODH cân tại O ⇒ ∠ ODH =  ∠ OHD

Mà Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét tam giác MBD có:

∠ (MDB) =  ∠ (MBD) (vì cùng phụ với hai góc bằng nhau  ∠ (MDH) =  ∠ (MHD))

Suy ra, tam giác MBD cân tại M, do đó MD = MB (2)

Từ (1) và (2) suy ra, MB = MH

Vậy M là trung điểm của BH

Tương tự, ta cũng có N là trung điểm của CH.