Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC có AD là phân giác
\(\Rightarrow\dfrac{BD}{AB}=\dfrac{DC}{AC}=\dfrac{BD+DC}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{5}{4+6}=\dfrac{5}{10}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}BD=\dfrac{1}{2}.AB=\dfrac{1}{2}.4=2\left(cm\right)\\DC=\dfrac{1}{2}.AC=\dfrac{1}{2}.6=3\left(cm\right)\end{matrix}\right.\)
b) Ta có: DE//AC \(\Rightarrow\widehat{ADE}=\widehat{DAC}\)(so le trong)
Mà \(\widehat{DAC}=\widehat{BAD}\)(AD là phân giác)
\(\Rightarrow\widehat{ADE}=\widehat{BAD}\) => Tam giác ADE cân tại E => AE=DE
c) Xét tam giác ABC có:
DE//AC \(\Rightarrow\dfrac{DE}{AC}=\dfrac{BD}{BC}\Rightarrow DE=\dfrac{BD.AC}{BC}=\dfrac{2.6}{5}=2,4\left(cm\right)\)
Mà AE=DE \(\Rightarrow AE=DE=2,4cm\)
a, \(\Delta ABC\sim\Delta CBD\)
\(\dfrac{AB}{CB}=\dfrac{BC}{BD}=\dfrac{4}{6}=\dfrac{6}{4+5}=\dfrac{2}{3}\)
b, \(\dfrac{AC}{CD}=\dfrac{AB}{CB}=\dfrac{2}{3}\)
\(\Rightarrow CD=\dfrac{3AC}{2}=\dfrac{15}{2}\)
-Chúc bạn học tốt-
cosB = (AB^2 +BC^2-AC^2)/(2.AB.BC) = (4^2 +5^2 -6^2)/(2.4.5) = 1/8
=> ^B = 92°
cosC = (CA^2 +CB^2 - AB^2)/(2.CA.CB) = (6^2+5^2-4^2)/(2.6.5)=3/4
=> ^C = 46°
Vậy ^B = 2^C (ĐPCM)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)
Vậy: BC=10cm; AD=3cm; CD=5cm
b) Ta có: \(\dfrac{CE}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)
\(\dfrac{CD}{CB}=\dfrac{5}{10}=\dfrac{1}{2}\)
Do đó: \(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)
Xét ΔCED và ΔCAB có
\(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)(cmt)
\(\widehat{C}\) chung
Do đó: ΔCED\(\sim\)ΔCAB(c-g-c)
Cho tam giác ABC có AB=AC=5cm,BC= 4cm. BM,CN lần lượi là phân giác góc B và C.
a) Chứng minh MN // BC
a) Xét ΔBAC có
BM là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AM}{MC}=\dfrac{AB}{BC}\)(Tính chất đường phân giác của tam giác)(1)
Xét ΔBAC có
CN là đường phân giác ứng với cạnh AB(gt)
nên \(\dfrac{AN}{NB}=\dfrac{AC}{BC}\)(Tính chất đường phân giác của tam giác)(2)
Ta có: ΔABC cân tại A(gt)
nên AB=AC(Hai cạnh bên)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{AN}{NB}=\dfrac{AM}{MC}\)
Xét ΔABC có
N∈AB(gt)
M∈AC(gt)
\(\dfrac{AN}{NB}=\dfrac{AM}{MC}\)(cmt)
Do đó: NM//BC(Định lí Ta lét đảo)