K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

hình bn tự vẽ nha 

a, Xét hai tam giác vuông AME và AMF có :  

AM là cạnh chung 

\(\widehat{EAM} = \widehat{FAM}\) ( do AM là tia phân giác góc A ) 

=> tam giác AME = tam giác AMF ( cạnh huyền - góc nhọn ) 

=> ME = MF ( hai cạnh tương ứng ) 

b,Do AC // BM  

mà IF vuông góc CA 

=> FI vuông góc với BI ( tính chất đường vuông góc ) 

Do ME vuông góc AB 

MI vuông góc BI 

=> AB // BI ( tính chất hai đường thẳng // ) 

Xét hai tam giác vuông MEB và MIB có 

BM là cạnh chung 

\(\widehat{EMB} = \widehat{MBI}\) ( hai góc so le trong ) 

=> tam giác MEB = tam giác MIB ( cạnh huyền - góc nhọn ) 

=> BE = Bi ( hai cạnh tương ứng ) 

21 tháng 1 2022

Làm thêm hộ mik phần d, tam giác BME= tam giác CMF

 

A B C M I E F

a) _ Xét tam giác AME và tam giác AMF có :

E = F ( = 90 độ)

AM là cạnh huyền chung

A1=A2 ( AM là tia phân giác của BAC)

suy ra : tam giác AME = tam giác AMF ( CH-GN)

suy ra AE = AF ( 2 cạnh tương ứng)

suy ra tam giác AEF cân tại A

vẽ hình tạm nha

~ chúc bn học tốt~

11 tháng 12 2018

7 tháng 12 2015

len google

 

23 tháng 3 2021

Cậu ghi rõ ràng hơn chút được không ạ . Cậu ghi AB AC ; BE BI mình không hiểu đc

10 tháng 7 2017

A B C M I

a) Xét tam giác AMB và tam giác AMC ta có:

AM là cạnh chung

AB = AC (gt)

góc BAM = góc CAM ( AM là tia phân giác của góc BAC)

=> tam giác AMB = tam giác AMC ( c - g - c)

b) Xét tam giác AEM vuông tại E và tam giác AFM vuông tại F ta có:

AM là cạnh chung

góc EAM = góc FAM ( AM là tia p/g của góc BAC)

=> tam giác AEM = tam giác AFM ( ch - gn)

=> ME = MF ( 2 cạnh tương ứng)

c) Ta có:

BI // AC (gt)

IF _|_ AC tại F (gt)

=> FI _|_ BI tại I

 Ta có:

góc EBM = góc FCM ( tam giác AMB = tam giác AMC)

góc IBM = góc FCM ( 2 góc so le trong và BI // AC)

=> góc EBM = góc IBM

Xét tam giác EBM vuông tại E và tam giác IBM vuông tại I ta có:

BM là cạnh chung

góc EBM = góc IBM (cmt)

=> tam giác EBM = tam giác IBM ( ch - gn)

=> BE = BI ( 2 cạnh tương ứng)

d) Ta có:

ME = MF ( tam giác AEM = tam giác ÀM)

ME = MB ( tam giác EBM = tam giác IBM)

=> MF = MB

=> M là trung điểm của BF ( M thuộc BF)

=> MB = 1/2 IF

Mà ME = MB ( cmt)

Nên ME = 1/2 IF ( đpcm)

B E A F C M I 1 2 1 N2

a) M là trung điểm của BC

=> BM=CM

tam giác ABC cân tại A

=> AB=AC

xét tam giác ABM và tam giác ACM có

AB=AC

BM=CM

cạnh AM chung

do đó : tam giác ABM= tam giác ACM ( c.c.c)

b) do tam giác ABM = tam giác ACM

=> góc A1 = góc A2

xét tam giác AEM và tam giác AFM có

cạnh AM chung

góc A1= góc A2

góc AEM=góc AFM =90 độ

do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)

c) gọi N là giao của AM va EF

do tam giác AEM= tam giác AFM

=> AE=AF

xét tam giác AEN và tam giác AFN có

cạnh AN chung

góc A1 = góc A2

AE=AF

do đó tam giác AEN=tam giác AFN ( c.g.c)

=> góc N1=góc N2

mà góc N1 + góc N2 = 180 độ ( kề bù)

=> góc N1= góc N2=90 độ

=> AN vuông góc EF

hay AM vuông góc EF

d) Qua F kẻ đg thẳng // với CE cắt AM tại H

+ HF là đg trung bình của ΔACI

HF=\(\frac{1}{2}\)CI⇒HF=12CI

+ ΔABM cân tại M

=> đg cao ME đồng thới là đg trung tuyến

=> AE = BE

+ Tương tự : AF = CF

+ EF là đg trung bình của ΔABC

=> EF // BC

+ Tứ giác EFCM là hbh

=> MK = FK

+ HF // CE => HF // IK

+ IK là đg trung bình của ΔMHF

\(\Rightarrow IK=\frac{1}{2}HF\Rightarrow CI=4IK\)

IK=12HFCI=4IK

15 tháng 5 2020

a) M là trung điểm của BC

=> BM=CM

tam giác ABC cân tại A

=> AB=AC

xét tam giác ABM và tam giác ACM có

AB=AC

BM=CM

cạnh AM chung

do đó : tam giác ABM= tam giác ACM ( c.c.c)

b) do tam giác ABM = tam giác ACM

=> góc A1 = góc A2

xét tam giác AEM và tam giác AFM có

cạnh AM chung

góc A1= góc A2

góc AEM=góc AFM =90 độ

do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)

c) gọi N là giao của AM va EF

do tam giác AEM= tam giác AFM

=> AE=AF

xét tam giác AEN và tam giác AFN có

cạnh AN chung

góc A1 = góc A2

AE=AF

do đó tam giác AEN=tam giác AFN ( c.g.c)

=> góc N1=góc N2

mà góc N1 + góc N2 = 180 độ ( kề bù)

=> góc N1= góc N2=90 độ

=> AN vuông góc EF

hay AM vuông góc EF

hok tốt!

31 tháng 1 2022

a) Xét \(\Delta ABM\) và \(\Delta ACM\) có:

\(AB=AC\) (do \(\Delta ABC\) cân tại \(A\))

\(\widehat{BAM}=\widehat{CAM}\) (do \(AM\) là tia phân giác \(\widehat{A}\))

\(AM\) là cạnh chung

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.g.c\right)\)

b) Xét \(\Delta AEM\left(\widehat{AEM}=90^o\right)\) và \(\Delta AFM\left(\widehat{AFM}=90^o\right)\) có:

\(\widehat{EAM}=\widehat{FAM}\) (do \(AM\) là tia phân giác \(\widehat{A}\))

\(AM\) là cạnh chung

\(\Rightarrow\Delta AEM=\Delta AFM\left(ch.gn\right)\)

\(\Rightarrow AE=AF\) (\(2\) cạnh tương ứng)

\(\Rightarrow\Delta AEF\) cân tại \(A\)

c) Xét \(\Delta AEF\) cân tại \(A\) có \(AM\) là đường phân giác \(\widehat{A}\)

\(\Rightarrow AM\) cũng là đường trung trực \(\Delta AEF\)

\(\Rightarrow AM\perp EF\)

31 tháng 1 2022

Tự vẽ hình

a, Tam giác AMB và tam giác AMC

AB = AC ( Tam giáC ABc cân )'

góc BAM = góc CAM ( AM là phân giác)

AM chung 

=> Tam giác AMB = tam giác AMC ( c-g-c)

b, Xét tam giá AEM và tam giác AFM cs

góc AEM = góc AFM = 90 độ ( gt )

góc EAM = góc FAM ( AM là phân giác)

AM chung

=>tam giá AEM = tam giác AFM ( ch-gn)

=> AE = AF hay tam giác AEF cân tại A

c, Xét tam giác AEF cân tại A cs AM là tia phân giác đồng thời là đg cao

=> AM vuông góc vs EF