K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2016

Đặt \(\sqrt{x-2}=\:a\)(a >= 0)

Ta có 6a - 3a = 4(5 + a)

<=> a = - 20 (không thỏa điều kiện)

Vậy phương trình vô nghiệm

2 tháng 9 2016

bạn giải rõ hơn chút nữa được không? Mình cám ơn nhiều

15 tháng 10 2021

\(\sqrt{36x-72}-15\sqrt{\dfrac{x-2}{25}}=20+4\sqrt{x-2}\)

\(\Leftrightarrow6\sqrt{x-2}-3\sqrt{x-2}-4\sqrt{x-2}=20\)

\(\Leftrightarrow-\sqrt{x-2}=20\)(vô lý)

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

a. ĐKXĐ: $x\geq 1$

PT $\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{3}{2}.\sqrt{9}.\sqrt{x-1}+24.\sqrt{\frac{1}{64}}.\sqrt{x-1}=-17$

$\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17$

$\Leftrightarrow -\sqrt{x-1}=-17$

$\Leftrightarrow \sqrt{x-1}=17$

$\Leftrightarrow x-1=289$

$\Leftrightarrow x=290$

b. ĐKXĐ: $x\geq \frac{1}{2}$

PT $\Leftrightarrow \sqrt{9}.\sqrt{2x-1}-0,5\sqrt{2x-1}+\frac{1}{2}.\sqrt{25}.\sqrt{2x-1}+\sqrt{49}.\sqrt{2x-1}=24$

$\Leftrightarrow 3\sqrt{2x-1}-0,5\sqrt{2x-1}+2,5\sqrt{2x-1}+7\sqrt{2x-1}=24$
$\Leftrightarrow 12\sqrt{2x-1}=24$

$\Leftrihgtarrow \sqrt{2x-1}=2$

$\Leftrightarrow x=2,5$ (tm)

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

c. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{36}.\sqrt{x-2}-15\sqrt{\frac{1}{25}}\sqrt{x-2}=4(5+\sqrt{x-2})$

$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)

Vậy pt vô nghiệm

17 tháng 8 2020

Lời giải:

a) ĐK: $x\geq 2$

PT $\Leftrightarrow \sqrt{36(x-2)}-15\sqrt{\frac{1}{25}.(x-2)}=4(5+\sqrt{x-2})$

$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)

Vậy pt vô nghiệm.

b) ĐK: $x\geq \frac{1}{2}$

PT $\Leftrightarrow \sqrt{2x-2\sqrt{2x-1}}=2$

$\Leftrightarrow \sqrt{(2x-1)-2\sqrt{2x-1}+1}=2$

$\Leftrightarrow \sqrt{(\sqrt{2x-1}-1)^2}=2$

$\Leftrightarrow |\sqrt{2x-1}-1|=2$

$\Leftrightarrow \sqrt{2x-1}-1=\pm 2$

$\Leftrightarrow \sqrt{2x-1}=3$ (chọn) hoặc $\sqrt{2x-1}=-1$

$\Rightarrow x=5$ (thỏa mãn)

3.

PT \(\left\{\begin{matrix} x+2\geq 0\\ 3x^2=(x+2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ 2x^2-4x-4=0\end{matrix}\right.\Rightarrow x=1\pm \sqrt{3}\)

AH
Akai Haruma
Giáo viên
23 tháng 10 2020

Lời giải:

a) ĐK: $x\geq 2$

PT $\Leftrightarrow \sqrt{36(x-2)}-15\sqrt{\frac{1}{25}.(x-2)}=4(5+\sqrt{x-2})$

$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)

Vậy pt vô nghiệm.

b) ĐK: $x\geq \frac{1}{2}$

PT $\Leftrightarrow \sqrt{2x-2\sqrt{2x-1}}=2$

$\Leftrightarrow \sqrt{(2x-1)-2\sqrt{2x-1}+1}=2$

$\Leftrightarrow \sqrt{(\sqrt{2x-1}-1)^2}=2$

$\Leftrightarrow |\sqrt{2x-1}-1|=2$

$\Leftrightarrow \sqrt{2x-1}-1=\pm 2$

$\Leftrightarrow \sqrt{2x-1}=3$ (chọn) hoặc $\sqrt{2x-1}=-1$

$\Rightarrow x=5$ (thỏa mãn)

3.

PT \(\left\{\begin{matrix} x+2\geq 0\\ 3x^2=(x+2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ 2x^2-4x-4=0\end{matrix}\right.\Rightarrow x=1\pm \sqrt{3}\)

19 tháng 7 2018

\(\sqrt{36x-72}-15\sqrt{\dfrac{x-2}{25}}=4\left(5+\sqrt{x-2}\right)\) \(\left(x\text{≥}2\right)\)

\(\sqrt{36\left(x-2\right)}-15.\dfrac{\sqrt{x-2}}{5}=20+4\sqrt{x-2}\)

\(6\sqrt{x-2}-3\sqrt{x-2}-4\sqrt{x-2}=20\)

\(-\sqrt{x-2}=20\) ( vô lý )

KL : Phương trình vô nghiệm .

NV
13 tháng 6 2019

ĐKXĐ:...

\(\left(\frac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right):\left(\frac{25-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}+\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)

\(=\left(\frac{\sqrt{x}-\sqrt{x}-5}{\sqrt{x}+5}\right):\left(\frac{25-x-x+9+x-25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)=\frac{-5}{\left(\sqrt{x}+5\right)}.\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}{\left(9-x\right)}\)

\(=\frac{5\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{5}{\sqrt{x}+3}\)

23 tháng 3 2020

ĐKXĐ :\(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-3\ne0\\\sqrt{x}+5\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne3\\\sqrt{x}\ne-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

- Ta có : \(\left(\frac{x-5\sqrt{x}}{25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\left(\frac{x-5\sqrt{x}-25}{25}\right):\left(\frac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\left(\frac{x-5\sqrt{x}-25}{25}\right):\left(\frac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)

\(=\left(\frac{x-5\sqrt{x}-25}{25}\right):\left(\frac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\frac{x-9}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\frac{x-25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)

\(=\left(\frac{x-5\sqrt{x}-25}{25}\right):\left(\frac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)

\(=\left(\frac{x-5\sqrt{x}-25}{25}\right):\left(\frac{-x+9}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)

\(=\left(\frac{x-5\sqrt{x}-25}{25}\right):\left(\frac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)

\(=\left(\frac{x-5\sqrt{x}-25}{25}\right)\left(\frac{\sqrt{x}+5}{-\sqrt{x}-3}\right)\)

\(=\frac{\left(x-5\sqrt{x}-25\right)\left(\sqrt{x}+5\right)}{-25\left(\sqrt{x}+3\right)}=\frac{x\sqrt{x}+5x-5x-25\sqrt{x}-25\sqrt{x}-125}{-25\left(\sqrt{x}+3\right)}\)

\(=\frac{x\sqrt{x}-125-50\sqrt{x}}{-25\left(\sqrt{x}+3\right)}\)

26 tháng 9 2019

a>Tìm đkxđ

b>Rút gọn