Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{x-2}=\:a\)(a >= 0)
Ta có 6a - 3a = 4(5 + a)
<=> a = - 20 (không thỏa điều kiện)
Vậy phương trình vô nghiệm
\(\sqrt{36x-72}-15\sqrt{\dfrac{x-2}{25}}=20+4\sqrt{x-2}\)
\(\Leftrightarrow6\sqrt{x-2}-3\sqrt{x-2}-4\sqrt{x-2}=20\)
\(\Leftrightarrow-\sqrt{x-2}=20\)(vô lý)
a. ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{3}{2}.\sqrt{9}.\sqrt{x-1}+24.\sqrt{\frac{1}{64}}.\sqrt{x-1}=-17$
$\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17$
$\Leftrightarrow -\sqrt{x-1}=-17$
$\Leftrightarrow \sqrt{x-1}=17$
$\Leftrightarrow x-1=289$
$\Leftrightarrow x=290$
b. ĐKXĐ: $x\geq \frac{1}{2}$
PT $\Leftrightarrow \sqrt{9}.\sqrt{2x-1}-0,5\sqrt{2x-1}+\frac{1}{2}.\sqrt{25}.\sqrt{2x-1}+\sqrt{49}.\sqrt{2x-1}=24$
$\Leftrightarrow 3\sqrt{2x-1}-0,5\sqrt{2x-1}+2,5\sqrt{2x-1}+7\sqrt{2x-1}=24$
$\Leftrightarrow 12\sqrt{2x-1}=24$
$\Leftrihgtarrow \sqrt{2x-1}=2$
$\Leftrightarrow x=2,5$ (tm)
c. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{36}.\sqrt{x-2}-15\sqrt{\frac{1}{25}}\sqrt{x-2}=4(5+\sqrt{x-2})$
$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$
$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)
Vậy pt vô nghiệm
Lời giải:
a) ĐK: $x\geq 2$
PT $\Leftrightarrow \sqrt{36(x-2)}-15\sqrt{\frac{1}{25}.(x-2)}=4(5+\sqrt{x-2})$
$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$
$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)
Vậy pt vô nghiệm.
b) ĐK: $x\geq \frac{1}{2}$
PT $\Leftrightarrow \sqrt{2x-2\sqrt{2x-1}}=2$
$\Leftrightarrow \sqrt{(2x-1)-2\sqrt{2x-1}+1}=2$
$\Leftrightarrow \sqrt{(\sqrt{2x-1}-1)^2}=2$
$\Leftrightarrow |\sqrt{2x-1}-1|=2$
$\Leftrightarrow \sqrt{2x-1}-1=\pm 2$
$\Leftrightarrow \sqrt{2x-1}=3$ (chọn) hoặc $\sqrt{2x-1}=-1$
$\Rightarrow x=5$ (thỏa mãn)
3.
PT \(\left\{\begin{matrix} x+2\geq 0\\ 3x^2=(x+2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ 2x^2-4x-4=0\end{matrix}\right.\Rightarrow x=1\pm \sqrt{3}\)
Lời giải:
a) ĐK: $x\geq 2$
PT $\Leftrightarrow \sqrt{36(x-2)}-15\sqrt{\frac{1}{25}.(x-2)}=4(5+\sqrt{x-2})$
$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$
$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)
Vậy pt vô nghiệm.
b) ĐK: $x\geq \frac{1}{2}$
PT $\Leftrightarrow \sqrt{2x-2\sqrt{2x-1}}=2$
$\Leftrightarrow \sqrt{(2x-1)-2\sqrt{2x-1}+1}=2$
$\Leftrightarrow \sqrt{(\sqrt{2x-1}-1)^2}=2$
$\Leftrightarrow |\sqrt{2x-1}-1|=2$
$\Leftrightarrow \sqrt{2x-1}-1=\pm 2$
$\Leftrightarrow \sqrt{2x-1}=3$ (chọn) hoặc $\sqrt{2x-1}=-1$
$\Rightarrow x=5$ (thỏa mãn)
3.
PT \(\left\{\begin{matrix} x+2\geq 0\\ 3x^2=(x+2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ 2x^2-4x-4=0\end{matrix}\right.\Rightarrow x=1\pm \sqrt{3}\)
\(\sqrt{36x-72}-15\sqrt{\dfrac{x-2}{25}}=4\left(5+\sqrt{x-2}\right)\) \(\left(x\text{≥}2\right)\)
⇔ \(\sqrt{36\left(x-2\right)}-15.\dfrac{\sqrt{x-2}}{5}=20+4\sqrt{x-2}\)
⇔ \(6\sqrt{x-2}-3\sqrt{x-2}-4\sqrt{x-2}=20\)
⇔ \(-\sqrt{x-2}=20\) ( vô lý )
KL : Phương trình vô nghiệm .
ĐKXĐ:...
\(\left(\frac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right):\left(\frac{25-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}+\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)
\(=\left(\frac{\sqrt{x}-\sqrt{x}-5}{\sqrt{x}+5}\right):\left(\frac{25-x-x+9+x-25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)=\frac{-5}{\left(\sqrt{x}+5\right)}.\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}{\left(9-x\right)}\)
\(=\frac{5\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{5}{\sqrt{x}+3}\)
ĐKXĐ :\(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-3\ne0\\\sqrt{x}+5\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne3\\\sqrt{x}\ne-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
- Ta có : \(\left(\frac{x-5\sqrt{x}}{25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
\(=\left(\frac{x-5\sqrt{x}-25}{25}\right):\left(\frac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
\(=\left(\frac{x-5\sqrt{x}-25}{25}\right):\left(\frac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)
\(=\left(\frac{x-5\sqrt{x}-25}{25}\right):\left(\frac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\frac{x-9}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\frac{x-25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)
\(=\left(\frac{x-5\sqrt{x}-25}{25}\right):\left(\frac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\left(\frac{x-5\sqrt{x}-25}{25}\right):\left(\frac{-x+9}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\left(\frac{x-5\sqrt{x}-25}{25}\right):\left(\frac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\left(\frac{x-5\sqrt{x}-25}{25}\right)\left(\frac{\sqrt{x}+5}{-\sqrt{x}-3}\right)\)
\(=\frac{\left(x-5\sqrt{x}-25\right)\left(\sqrt{x}+5\right)}{-25\left(\sqrt{x}+3\right)}=\frac{x\sqrt{x}+5x-5x-25\sqrt{x}-25\sqrt{x}-125}{-25\left(\sqrt{x}+3\right)}\)
\(=\frac{x\sqrt{x}-125-50\sqrt{x}}{-25\left(\sqrt{x}+3\right)}\)