Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh:
a) 5^300 và 3^500
b) (-16)^11 và (-32)^9
c) (2^2)^3 và 2^2^3
d) 2^30 + 2^30 + 4^30 và 3^20 + 6^20 + 8^20
e) 4^30 và 3×24^10
g) 2^0 + 2^1 + 2^2 + 2^3 +...+ 2^50 và 2^51
2A=22+23+24+...+250+251
=> 2A-A=(22+23+24+...+250+251) -(2+22+23+24+...+250)
<=> A=251-2
=> A=251-2<251
2A=22+23+24+...+250+251
=>2A-A=( 22+23+24+...+250+251)-(2+22+23+24+...+250)
óA=251-2
=>A=251-2<251
a, Chia hết cho 3 thì nhóm 2 số thành 1 cặp ; chia hết cho 7 thì nhóm 3 số thành 1 cặp
b, Đề phải là A = 2009.2011
Có :A = 2009.(2010+1) = 2009.2010+2009
= 2009.2010+2010-1 = 2010.(2009+1)-1 = 2010^2-1
Vì 2010^2-1 < 2010^2 = B => A < B
c, A = (3^3)^150 = 27^150
B = (5^2)^150 = 25^150
Vì 27^150 > 25^150 => A > B
k mk nha
Ta có: 3500=(35)100=243100
2700=(27)100=128100
Vì 243>128 nên: 243100>128100
hay 3500>2700
Ta có:
A=\(x\cdot\left(-2016\right)\cdot\left(-2017\right)\cdot\left(-2018\right)\cdot\left(-2019\right)\)
Vì \(\left(-2016\right)\cdot\left(-2017\right)\cdot\left(-2018\right)\cdot\left(-2019\right)>0\)
\(\Rightarrow\)A\(\ge0\forall x\inℤ\)
B=\(x\cdot\left(-\left|-4\right|\right)\cdot\left(-1^2\right)\cdot\left(-3\right)^2\cdot\left(-2\right)^3-\left(-5\right)\)
\(=x\cdot\left(-4\right)\cdot9\cdot\left(-8\right)+5\)
\(=x\cdot\left(-36\right)\cdot\left(-8\right)+5\)
\(=x\cdot288+5>0\forall x\inℤ\)
Vậy A\(\ge0\forall x\inℤ\), B\(>0\forall x\inℤ\).
Ta có :
\(\frac{1}{50}>\frac{1}{100}\)
\(\frac{1}{51}>\frac{1}{100}\)
............
\(\frac{1}{98}>\frac{1}{100}\)
\(\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow\frac{1}{50}+\frac{1}{51}+....+\frac{1}{98}+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}=\frac{50.1}{100}=\frac{1}{2}\)
\(\Rightarrow M>\frac{1}{2}\)
A= 22+22+23+24+..........+250
2A= 23+23+24+25+..........+251
A= 22+22+23+24+..........+250
2A - A= 23 + 251 - 22 - 22
A= 8+251-4 -4
A= 251
a) A = 251
b) A + 3 - 251=251+3-251
A = 3
\(a,2^{700}=\left(2^7\right)^{100}=128^{100}\)
\(5^{300}=\left(5^3\right)^{100}=125^{100}\)
Có \(128^{100}>125^{100}\Rightarrow2^{700}>5^{300}\)
\(b,S=1+2+2^2+...+2^{50}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{51}\)
\(\Rightarrow2S-S=S=2^{51}-1< 2^{51}\)
a) Ta có :
\(2^{700}=\left(2^7\right)^{100}=128^{100}\)
\(5^{300}=\left(5^3\right)^{100}=125^{100}\)
Vì \(128^{100}>125^{100}\)\(\Rightarrow\)\(2^{700}>5^{300}\)
Vậy \(2^{700}>5^{300}\)
b) \(S=1+2+2^2+...+2^{50}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{51}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{51}\right)-\left(1+2+2^2+...+2^{50}\right)\)
\(\Rightarrow S=2^{51}-1< 2^{51}\)
Vậy S < 251
_Chúc bạn học tốt_