Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có: -2x + 3 < -2y + 3
=> -2x + 3 - 3 < -2y + 3 - 3
=> -2x < -2y
=> -2. − 1 2 x > -2. − 1 2 y
=> x > y.
Đáp án cần chọn là: B
m: (x-y)(x^2-2xy+y^2)
=(x-y)*(x-y)^2
=(x-y)^3
=x^3-3x^2y+3xy^2-y^3
n: =-(x^3+x^2y-x-x^2y-xy^2+y)
=-x^3+x+xy^2-y
o: =-(x^3+x^2y^2-x^2-2xy-2y^3+2y)
=-x^3-x^2y^2+x^2+2xy+2y^3-2y
p: (1/2x-1)(2x-3)
=1/2x*2x-1/2x*3-2x+3
=x^2-3/2x-2x+3
=x^2-7/2x+3
q: (x-1/2y)(x-1/2y)
=(x-1/2y)^2
=x^2-xy+1/4y^2
r: (x^2-2x+3)(1/2x-5)
=1/2x^3-5x^2-x^2+10x+3/2x-15
=1/2x^3-6x^2+11,5x-15
1.\(x=\dfrac{5}{2}\)
2.\(y=\dfrac{10}{2}=5\)
3.\(-3y=15\Leftrightarrow y=-5\)
4/\(9t=-11\Leftrightarrow t=-\dfrac{11}{9}\)
bn ơi cs fải đề thế này ko?
\(2xy\left(x^2y-\frac{1}{2}xy\right)-2x^2y\left(xy-\frac{1}{2}y\right)+1\)
\(=\) \(2x^3y^2-x^2y^2-2x^3y^2+x^2y^2+1\)
\(=1\)
Vậy giá trị của biểu thức trên ko phụ thuộc vào biến nên giá trị của biểu thức luôn bằng 1
a: \(\dfrac{\left(x+1\right)}{x^2+2x-3}=\dfrac{\left(x+1\right)}{\left(x+3\right)\cdot\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+5\right)}{\left(x+3\right)\left(x-1\right)\left(x+2\right)\left(x+5\right)}\)
\(\dfrac{-2x}{x^2+7x+10}=\dfrac{-2x}{\left(x+2\right)\left(x+5\right)}=\dfrac{-2x\left(x+3\right)\left(x-1\right)}{\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x-1\right)}\)
b: \(\dfrac{x-y}{x^2+xy}=\dfrac{x-y}{x\left(x+y\right)}=\dfrac{y^2\left(x-y\right)}{xy^2\left(x+y\right)}\)
\(\dfrac{2x-3y}{xy^2}=\dfrac{\left(2x-3y\right)\left(x+y\right)}{xy^2\left(x+y\right)}\)
c: \(\dfrac{x-2y}{2}=\dfrac{\left(x-2y\right)\left(x-xy\right)}{2\left(x-xy\right)}\)
\(\dfrac{x^2+y^2}{2x-2xy}=\dfrac{x^2+y^2}{2\left(x-xy\right)}\)
\(1)A=2x\left(x-y\right)-y\left(y-2x\right)\)
\(=2x^2-2xy-y^2+2xy\)
\(=2x^2-y^2=2.\left(-\dfrac{2}{3}\right)^2-\left(-\dfrac{1}{3}\right)^2\)
\(=\dfrac{8}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)
\(2)B=5x\left(x-4y\right)-4y\left(y-5x\right)\)
\(=5x^2-20xy-4y^2+20xy\)
\(=5x^2-4y^2=5.\left(-\dfrac{1}{5}\right)^2-4.\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{5}-1=-\dfrac{4}{5}\)
\(3)C=\text{x.(x^2-y^2)-x^2(x+y)+y(x^2-x)}\)
\(=x^3-xy^2-x^3-x^2y+x^2y-xy\)
\(=-xy\left(x+1\right)\)
=>-2x>-2y
=>x<y
Ta có: -1 - 2x > -2y - 1
<=>-2x>-2y
<=>x<y