Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
và 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
Ta thấy:\(\frac{5^{11}+1}{5^{10}+1}\)>1 nên theo quy tắc : \(\frac{a}{m}\)>1 thì \(\frac{a}{m}\)>\(\frac{a+m}{b+m}\) ta có:
B=\(\frac{5^{11}+1}{5^{10}+1}\)>\(\frac{5^{11}+1+4}{5^{10}+1+4}\)>\(\frac{5^{11}+5}{5^{10}+5}\)=\(\frac{5\left(5^{10}+1\right)}{5\left(5^9+1\right)}\)=A
Vậy B>A
Nếu có gì thì cứ hỏi
Chúc bạn học tốt!
1/5+1/6+.........+1/17 < 2
Ta có 1/7>1/17 ta thay từ 1/6 đến hết là 1/7 thì 1/5+1/6+.........+1/17<1/5+1/6+1/7+...+1/7
Ta có số số hạng của dãy số 5+6+...17 là (17-5):1+1=13 số
Vậy 1/5+1/6+...+1/17<1/5+1/6+1/7+...+1/7
13 số 13 số
Ta tính 1/5+1/6+1/7+...+1/7
=(1/5+1/6)+1/7.11
=11/30+11/7=77/210+330/210=407/210 và 407/210<2
Vậy 1/5+1/6+.........+1/17 <1/5+1/6+1/7+...+1/7<2
1/5+1/6+.........+1/17 < 2
\(S=7(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{61}-\frac{1}{63}) \)
\(S=7(\frac{1}{3}-\frac{1}{63})\)
\(S=7(\frac{21}{63}-\frac{1}{63}) \)
\(S=7.\frac{20}{63}\)
\(S=\frac{20}{9}\)
Do đó:\(S<\frac{5}{2}\)
S=\(\frac{2.7}{3.5}+\frac{2.7}{5.7}+\frac{2.7}{7.9}+....+\frac{2.7}{61.63}\)và\(\frac{5}{2}\)
S=7.(\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.....-\frac{1}{63}\)) và\(\frac{5}{2}\)
S=7.(\(\frac{1}{3}-\frac{1}{63}\)) và\(\frac{5}{2}\)
S=7.\(\frac{20}{63}\)và\(\frac{5}{2}\)
=>S=\(\frac{20}{9}\)so với \(\frac{5}{2}\)
=>S=\(\frac{40}{18}\)và\(\frac{45}{18}\)
=>S<\(\frac{5}{2}\)
Ta có:
\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)
\(=\frac{1}{4}+\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)
Đặt \(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)
\(B=\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}\right)+\left(\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)
Giả sử tất cả các số hạng của B đều bằng \(\frac{1}{6^2}\)
\(\Rightarrow B=6.\frac{1}{6^2}=\frac{6}{36}=\frac{1}{6}<\frac{1}{4}\)
Do đó \(B<\frac{1}{4}\)
\(\Rightarrow A=\frac{1}{4}+B<\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
Vậy \(A<\frac{1}{2}\)
Quy đồng tử : tử số chung là : 30
- 3/124 = 30/1240
- 1/41 = 30/1230
- 5/207 = 30/1242
- 2/83 = 30/1245
Vì 1230<1240<1242<1245
=> 30/1230>30/1240>30/1242>30/1245
=> 1/41>3/124>5/207>2/83
Vậy 1/41>3/124>5/207>2/83
Chìa khóa để làm bài này là quy đồng tử bạn nha, nếu thấy mẫu to quá thì làm cách này là tốt nhất
S<1/2 (tính ra S ròi ss thui)