K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

Ta có: \(11^{1979}< 11^{1980}=1331^{660}\)

\(37^{1320}=37^{2\cdot660}=1369^{660}\)

mà \(1331^{660}< 1369^{660}\)

nên \(11^{1979}< 37^{1320}\)

30 tháng 7 2020

Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)

=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)

Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)

=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)

Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)

=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)

=> 10B < 10A

=> B < A

b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)

Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)

=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> B < A

13 tháng 2 2022

sai rồi

2 tháng 5 2023

A = \(\dfrac{5^{2020}+1}{5^{2021}+1}\) ⇒ A \(\times\) 10 = 2 \(\times\)\(\times\) \(\dfrac{5^{2020}+1}{5^{2021}+1}\) =2\(\times\) \(\dfrac{5^{2021}+5}{5^{2021}+1}\)

10A =2 \(\times\) \(\dfrac{5^{2021}+5}{5^{2021}+1}\) = 2 \(\times\)(1 + \(\dfrac{4}{5^{2021}+1}\) )= 2 + \(\dfrac{8}{5^{2021}+1}\) >2

B = \(\dfrac{10^{2019}+1}{10^{2020}+1}\) ⇒ B \(\times\) 10 = 10 \(\times\) \(\dfrac{10^{2019}+1}{10^{2020}+1}\)\(\dfrac{10^{2020}+10}{10^{2020}+1}\)

10B = \(\dfrac{10^{2020}+10}{10^{2020}+1}\) = 1 + \(\dfrac{9}{10^{2020}+1}\) < 2

10A > 2 > 10B ⇒ 10A>10B ⇒ A>B

 

 

 

 

 ta có: M=10^2020 +1 / 10^2019 +1

=> M/10= 10^2020 +1 / 10( 10^2019 +1 )

= 10^2020+1/ 10^2020 +10

=>  10/A=  10^2020 +10/10^2020 +1

=(10^2020 +1) +9/ 10^2020+1

=10^2020+1 /10^2020+1 + 9/10^2020+1

=1+ 9/10^2020+1

ta lại có: N=10^2021 +1/10^2020 +1

=> N/10= 10^2021+1/ 10(10^2020+1)

= 10^2021+1 / 10^2021+10

=> 10/N=10^2021+10 / 10^2021+1

=(10^2021+1) +9/10^2021+1

=10^2021+1/10^2021+1 +9/10^2021+1

=1+ 9/10^2021+1

ta thấy: 10/M>10N

=>M<N

\(M=\dfrac{10^{2020}+1}{10^{2019}+1}=1-\dfrac{9}{10^{2019}+1}\)

\(N=\dfrac{10^{2021}+1}{10^{2020}+1}=1-\dfrac{9}{10^{2020}+1}\)

Ta có: \(10^{2019}+1< 10^{2020}+1\)

\(\Leftrightarrow\dfrac{9}{10^{2019}+1}>\dfrac{9}{10^{2020}+1}\)

\(\Leftrightarrow-\dfrac{9}{10^{2019}+1}< -\dfrac{9}{10^{2020}+1}\)

\(\Leftrightarrow M< N\)

16 tháng 4 2020

Ta có : \(\frac{2019}{2020}=1-\frac{1}{2020}\)

            \(\frac{2020}{2021}=1-\frac{1}{2021}\)

Vì \(\frac{1}{2020}>\frac{1}{2021}\) nên \(1-\frac{1}{2020}< 1-\frac{1}{2021}\)

\(\Rightarrow\frac{2019}{2020}< \frac{2020}{2021}\)

Ta có : \(\frac{672}{2017}< \frac{673}{2017}< \frac{673}{2020}\)

\(\frac{\Rightarrow672}{2017}< \frac{673}{2020}\)

16 tháng 4 2020

1.So sánh phân số: \(\frac{2019}{2020}\) và  \(\frac{2020}{2021}\)

Ta có : \(\frac{2019}{2020}\) +  \(\frac{1}{2020}\) =  \(\frac{2020}{2020}\) =  1

           \(\frac{2020}{2021}\) +  \(\frac{1}{2021}\) =  \(\frac{2021}{2021}\) =  1

  \(\frac{1}{2020}\)  >  \(\frac{1}{2021}\) nên  \(\frac{2019}{2020}\)  <  \(\frac{2020}{2021}\)  

Mình chỉ biết mỗi câu này thôi, mình chắc chắn với bạn là câu này đúng không sai đâu

~ Học tốt ~

18:

a: \(S=3\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{98\cdot100}\right)\)

=3*(1/2-1/4+1/4-1/6+...+1/98-1/100)

=3*49/100=147/100

b: Để A là số nguyên thì n-1 thuộc Ư(2)

=>n-1 thuộc {1;-1;2;-2}

=>n thuộc {2;0;3;-1}