Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\left(m^3-m+1-m^2+3\right)^2=\left(m^3-m^2-m+4\right)^2\)
a: \(A=2\left(m^3+n^3\right)-3\left(m^2+n^2\right)\)
\(=2\left[\left(m+n\right)^3-3mn\left(m+n\right)\right]-3\left[\left(m+n\right)^2-2mn\right]\)
\(=2-6mn-3+6mn\)
=-1
c: \(C=\left(a-1\right)^3-4a\left(a+1\right)\left(a-1\right)+3\left(a-1\right)\left(a^2+a+1\right)\)
\(=a^3-3a^2+3a-1-4a\left(a^2-1\right)+3a^3-3\)
\(=4a^3-3a^2+3a-4-4a^3+4a\)
\(=-3a^2+7a-4\)
\(=-3\cdot9-21-4\)
=-27-21-4
=-52
\(m^3+n^3+p^3-3mnp=\left(m^3+3m^2n+3mn^2+n^3\right)+p^3-3mnp-3m^2n-3mn^2=\left(m+n\right)^3+p^3-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left[\left(m+n\right)^2-\left(m+n\right)p-p^2\right]-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-mp-np-p^2\right)-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-mp-np-p^2-3mn\right)\)
\(=\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-mp\right)\)
Xét hiệu m2 - m3 = m2 (1 - m) ta có:
Vì 0 < m < 1 => 1 - m > 0 => m2 (1 - m) > 0
Hay m2 - m3 > 0 Û m2 > m3.
Vậy m2 > m3.
Đáp án cần chọn là: A