K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2021

`A=3/4+8/9+.............+9999/10000`

`=1-1/4+1-1/9+,,,,,,,,,,+1-1/10000`

`=99-(1/4+1/9+.........+1/10000)<99-0=99`

`=>A<99`

5 tháng 6 2021

Thanks

22 tháng 1 2020

Ta có : \(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{10000-1}{10000}\)

\(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)

\(=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\left(99\text{ số hạng 1}\right)\)

\(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\)

\(=99-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)=99-\left(\frac{1}{2}-\frac{1}{101}\right)\)

\(=99-\frac{99}{202}>99-\frac{1}{2}=98,5\)

=> A > 98,5 

=> A > 98

22 tháng 1 2020

ths bn

10 tháng 8 2017

Ta thấy : \(4=2^2;9=3^2;....;10000=100^2\) nên A có \(\left(100-2\right):1+1=99\) số hạng

Ta có :

\(\frac{3}{4}< \frac{4}{4}=1\)

\(\frac{8}{9}< \frac{9}{9}=1\)

\(\frac{15}{16}< \frac{16}{16}=1\)

\(......\)

\(\frac{9999}{10000}< \frac{10000}{10000}=1\)

\(\Rightarrow A=\frac{3}{4}+\frac{8}{9}+....+\frac{9999}{10000}< 1+1+...+1\)(Vì A có 99 số hạng nên cũng có 99 số 1 tương ứng)

\(\Rightarrow A< 99\)

10 tháng 8 2017

\(A=\frac{3}{4}+\frac{8}{9}+...+\frac{9999}{10000}\)

\(A=1-\frac{1}{4}+1-\frac{1}{9}+...+1-\frac{1}{10000}\)

\(A=99-\left(\frac{1}{4}+\frac{1}{9}+...+\frac{1}{10000}\right)\)

Vì biểu thức trong dấu ngoặc đơn luôn lớn hơn 0 nên A<99

Vậy A<99

4 tháng 5 2017

\(\frac{3}{4}\)*\(\frac{8}{9}\)*\(\frac{15}{16}\)********\(\frac{9999}{10000}\)

\(\frac{1\cdot3}{2^2}\)*\(\frac{2\cdot4}{3^2}\)********\(\frac{99\cdot101}{100^2}\)

\(\frac{1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot99}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\)\(\frac{3\cdot4\cdot5\cdot\cdot\cdot101}{2\cdot3\cdot4\cdot\cdot\cdot100}\)

\(\frac{1}{100}\)*\(\frac{101}{2}\)=\(\frac{101}{200}\)

4 tháng 5 2017

Ta có: A = \(\frac{3}{8}\)\(\frac{8}{9}\).\(\frac{15}{16}\). ... .\(\frac{9999}{10000}\)
\(\Rightarrow\) A = \(\frac{1.3}{2^2}\).\(\frac{2.4}{3^2}\)\(\frac{3.5}{4^2}\). ... . \(\frac{99.101}{100^2}\)
\(\Rightarrow\) A = \(\frac{1.111}{2.100}\)\(\frac{111}{200}\)
Vậy: A = \(\frac{111}{200}\).

1 tháng 5 2017

Ta có :

\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)

\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)

\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)

\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99\)\(\left(1\right)\)

gọi B là biểu thức trong ngoặc

Lại có :

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B< 1-\frac{1}{100}< 1\)

\(\Rightarrow A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99-\left(1-\frac{1}{100}\right)>98\)

\(\Rightarrow A>98\)\(\left(2\right)\)

từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(98< A< 99\)

vậy A không phải là số tự nhiên

4 tháng 5 2017

phần bạn đánh dấu (1) thì A<99 vì A= 99 trừ đi một số mà