Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề tý: \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\) mới có thể tính được nhé!
Ta có: \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(\Rightarrow A=1-\frac{1}{2020}=\frac{2020}{2020}-\frac{1}{2020}=\frac{2019}{2020}\)
Đến đây bạn tự làm tiếp nhé! Phân tích đến đây là dễ r =)
đề là như vậy bạn à ban đầu mk cũng nghĩ là sai đề nhg ko phải tại vì là đề thi HSG
\(\Rightarrow A=\frac{5.2.3}{3.3.5.5}=\frac{1.2.1}{1.3.1.5}=\frac{2}{15}\)
\(B=\frac{3.3.2.2-3.3.2}{2.2.2.3.3+7.3.3}=\frac{1.1.1.1-1.1.2}{2.1.1.1.1+7.1.1}=\frac{-1}{9}\)
=> A > B
Ai thấy đúng k nha
\(A=\frac{5.6}{9.25}=\frac{1.2}{3.5}=\frac{2}{15}.\)
\(B=\frac{18.4-18}{8.9+7.9}=\frac{18\left(4-1\right)}{9\left(8+7\right)}=\frac{18.3}{9.15}=\frac{2.1}{15}=\frac{2}{15}.\)
\(\Rightarrow A=B.\)
ta có 20/39 > 14/39
22/27 > 22/29
18/43 < 18/41
=> 20/39+22/27+18/43 > 14/39+22/29+18/41
a,
\(-\frac{13}{38}=-1--\frac{25}{38}=-1+\frac{25}{38}\)
\(\frac{29}{-88}=-\frac{29}{88}=-1--\frac{59}{88}=-1+\frac{59}{88}\)
Vì \(\frac{25}{38}< \frac{59}{88}\Rightarrow-\frac{13}{38}< \frac{29}{-88}\)
b,
Ta có:
3301 > 3300 = [33]100 = 27100
5199 < 5200 = [52]100 = 25100
Mà 27100 > 25100 => 3301 > 5199
c,
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left[2n+1\right]\left[2n+3\right]}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\)
\(=1-\frac{1}{2n+3}< 1\)
Vậy P < 1
\(5^{199}=\left(5^{\frac{199}{301}}\right)^{301}\)
\(5^{\frac{199}{301}}< 3^1\)
\(\Leftrightarrow5^{199}< 3^{301}\)
cho mk một tk đi bà con ơi
ủng hộ mk đi làm ơn