K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2019

Ta có : \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)

\(=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

\(< \frac{1}{4}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right)n}\right)\)

\(=\frac{1}{4}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(=\frac{1}{4}.\left(2-\frac{1}{n}\right)\)

\(=\frac{1}{2}-\frac{1}{4n}< 1\)

Vậy A < 1

26 tháng 9 2019

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}.\)

\(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{4n^2}.\)

\(A=\frac{1}{4}\left(1+\frac{1}{4}+\frac{1}{9}+...+\frac{1}{n^2}\right)\)

\(A=\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

So sánh \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};....\)

\(\Rightarrow A< \frac{1}{4}\left(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{n\left(n-1\right)}\right)\)

\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{n-1}+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{n}\right)\)

\(\Rightarrow A< \frac{1}{4}\left(2-\frac{1}{n}\right)\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{4n}\)

có \(\frac{1}{2}>\frac{1}{2}-\frac{1}{4n}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{4n}< \frac{1}{2}\) mà \(\frac{1}{2}< 1\)

\(\Rightarrow A< 1\)

6 tháng 12 2016

a) A>1

b) B<1/2

6 tháng 12 2016

giải chi tiết ra cho mik với

9 tháng 10 2016

undefined

8 tháng 12 2015

\(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1-\frac{1}{n}<1\)

 

28 tháng 12 2016

\(A=\frac{1}{\left(2n\right)^2}< \frac{1}{2}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)=B\)

2B=1-1/(2n+1)

B=1/2-1/{2.(2n+1)Ư

KL A<1/2

8 tháng 1 2017

Câu hỏi hay đó nhưng mình ko biết cách làm

cau a dau nhi cuoi cung k phai j dau nha ! mk an lom ! 

28 tháng 9 2017

\(a,\)\(\left|x+5\right|=\frac{1}{7}-\left|\frac{4}{3}-\frac{1}{6}\right|\)

 \(\Leftrightarrow\left|x+5\right|=\frac{1}{7}-\frac{7}{6}\)

\(\Leftrightarrow\left|x+5\right|=\frac{-43}{42}\)

ta có |x+5| \(\ge\)\(\forall x\)

Mà \(-\frac{43}{42}< 0\)nên ko có giá trị x thoả mãn

b,

 \(\left|x+\frac{2}{3}\right|=\frac{1}{2}-\left(\frac{1}{4}+\frac{2}{3}\right)\)

\(\Leftrightarrow\left|x+\frac{2}{3}\right|=\frac{11}{12}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{2}{3}=\frac{11}{12}\forall x\ge-\frac{2}{3}\\-x-\frac{2}{3}=\frac{11}{12}\forall< -\frac{2}{3}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=-\frac{19}{12}\end{cases}}\)(thoả mãn đk)