Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{A}{B}=\frac{7^{2013}+1}{7^{2014}+1}.\frac{7^{2015}+1}{7^{2014}+1}=\frac{7^{4028}+7^{2013}+7^{2015}+1}{7^{4028}+2.7^{2014}+1}=\)
\(=\frac{7^{4028}+7^{2013}\left(1+7^2\right)+1}{7^{4028}+2.7.7^{2013}+1}=\frac{7^{4028}+50.7^{2013}+1}{7^{4028}+14.7^{2013}+1}>1\)
\(\Rightarrow A>B\)
\(A=\frac{2015^{2013}+1}{2015^{2014}+1}=\frac{\left(2015^{2013}+1\right)\left(2015^{2014}+1\right)}{\left(2015^{2014}+1\right)\left(2015^{2016}+1\right)}=\frac{2015^{4027}+2015^{2013}+2015^{2014}+1}{\left(2015^{2014}+1\right)\left(2015^{2016}+1\right)}\)
\(B=\frac{2015^{2015}+1}{2015^{2016}+1}=\frac{\left(2015^{2015}+1\right)\left(2015^{2014}+1\right)}{\left(2015^{2016}+1\right)\left(2015^{2014}+1\right)}=\frac{2015^{4029}+2015^{2015}+2015^{2014}+1}{\left(2015^{2016}+1\right)\left(2015^{2014}+1\right)}\)
Ta thấy hiển nhiên thử của B > tử của A nên B > A
Vậy...
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}-\frac{5}{4}\cdot\frac{13}{99}+\frac{5}{99}\cdot\frac{1}{4}\)
\(A=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)-\frac{13}{4}\cdot\frac{5}{99}+\frac{5}{99}\cdot\frac{1}{4}\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{5}{99}\cdot\left(\frac{13}{4}-\frac{1}{4}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)-\frac{5}{99}\cdot3\)
\(A=\frac{1}{2}\cdot\frac{32}{99}-\frac{5}{33}\)
\(A=\frac{16}{99}-\frac{5}{33}=\frac{1}{99}\)