Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Tìm x:
a)\(\left(x-2\right)^2=1\Leftrightarrow\left(x-2\right)^2=1^2.\)
\(\Rightarrow\orbr{\begin{cases}x-2=1\Rightarrow x=1+2=3\\x-2=-1\Rightarrow x=-1+2=1\end{cases}}\)
=> Vậy \(x=\orbr{\begin{cases}3\\1\end{cases}}\)
b) \(\left(2x-1\right)^3=-8\Leftrightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Rightarrow\left(2x-1\right)=-2\Rightarrow2x=-2+1=-1\)
\(\Rightarrow x=-1:2=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}\)
c) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\orbr{\begin{cases}\left(-\frac{1}{4}\right)^2\\\left(\frac{1}{4}\right)^2\end{cases}}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)=\orbr{\begin{cases}-\frac{1}{4}\\\frac{1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=-\frac{1}{4}\Rightarrow x=-\frac{1}{4}-\frac{1}{2}=-\frac{3}{4}\\x+\frac{1}{2}=\frac{1}{4}\Rightarrow x=\frac{1}{4}-\frac{1}{2}=-\frac{1}{4}\end{cases}}\)
Vậy \(x=-\frac{3}{4};-\frac{1}{4}\)
BT2:
Giải
a) \(9.3^3.\frac{1}{81}.3^2=3^2.3^3.\left(\frac{1}{3}\right)^4.3^2=\left(3^2.3^3.3^2\right).\left(\frac{1}{3}\right)^4\)
\(=3^{2+3+2}.\left(\frac{1}{3}\right)^4=3^7.\left(\frac{1}{3}\right)^4=\frac{3^7.1^4}{1.3^4}=3^3\)
b) \(4.2^5:\left(2^3.\frac{1}{16}\right)=2^2.2^5:\left(2^3.\left(\frac{1}{2}\right)^4\right)=2^{2+5}:\left(\frac{2^3.1^4}{2^4}\right)\)
\(=2^7:\left(\frac{1}{2}\right)=2^7.\frac{2}{1}=2^8\)
c) Chị đang nghĩ...
Bài làm:
Bài 1
a) \(\left(x-\frac{1}{2}\right)^2=0\)
\(\rightarrow\left(x-\frac{1}{2}\right)^2=0^2\)
\(\rightarrow x-\frac{1}{2}=0\)
\(\Rightarrow x=\frac{1}{2}\)
Bài 2
a) \(25^3\div5^2=\left(5^2\right)^3\div5^2=5^6\div5^2=5^4\)
b) \(\left(\frac{3}{7}\right)^{21}\div\left(\frac{9}{49}\right)^6=\left(\frac{3}{7}\right)^{21}\div\left[\left(\frac{3}{7}\right)^2\right]^6=\left(\frac{3}{7}\right)^{21}\div\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^9\)
c) \(3-\left(\frac{-6}{7}\right)^0+\left(\frac{1}{2}\right)^2\div2=3-1+\frac{1}{4}\times\frac{1}{2}=2+\frac{1}{8}=\frac{17}{8}\)
Bài 3
a) \(9\times3^3\times\frac{1}{81}\times3^2=3^2\times3^3\times\frac{1}{3^4}\times3^2=3^3\)
b) \(4\times2^5\div\left(2^3\times\frac{1}{16}\right)=2^2\times2^5\div\left(2^3\times\frac{1}{2^4}\right)=2^7\div\frac{1}{2}=2^6\)
c) \(3^2\times2^5\times\left(\frac{2}{3}\right)^2=3^2\times2^5\times\frac{2^2}{3^2}=3^2\times\frac{2^7}{3^2}=2^7\)
d) \(\left(\frac{1}{3}\right)^2\times\frac{1}{3}\times9^2=\left(\frac{1}{3}\right)^3\times3^4=\frac{1}{3^3}\times3^4=3^1\)
1,
Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)
\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)
\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)
Dấu "=" xảy ra khi x = 0, y = 13
Vậy Pmin = 6/7 khi x = 0, y = 13
2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6
3,
Ta có: \(10\le n\le99\)
\(\Rightarrow20\le2n\le198\)
\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)
\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)
\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)
Ta thấy chỉ có 36 là số chính phương
Vậy n = 32
4,
ÁP dụng TCDTSBN ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy B = 8