K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.\(\frac{1001}{1000}>\frac{1000}{1000}=1=\frac{1003}{1003}>\frac{1002}{1003}\Rightarrow\frac{1001}{1000}>\frac{1002}{1003}\)

2.a) \(x=\frac{a-3}{2a}\left(a\ne0\right)\)

\(=\frac{1}{2}\left(1-\frac{3}{a}\right)\inℤ\)

\(\Leftrightarrow\hept{\begin{cases}1-\frac{3}{a}\inℤ\\1-\frac{3}{a}⋮2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{3}{a}\inℤ\\\frac{3}{a}\equiv1\left(mod2\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\\\frac{3}{a}\equiv1\left(mod2\right)\end{cases}}\)

Ta có bảng :

\(a\)\(1\)\(-1\)\(3\)\(-3\)
\(\frac{3}{a}\)\(3\)\(-3\)\(1\)\(-1\)
\(1-\frac{3}{a}\)\(-2\)\(4\)\(0\)\(2\)
\(x\)\(-1\)\(2\)\(0\)\(1\)

Vậy \(a\in\left\{\pm1;\pm3\right\}\)

b)Ta có:\(\frac{a+2009}{a-2009}=1+\frac{4018}{a-2009}\left(a\ne2009\right)\)

\(\frac{b+2010}{b-2010}=1+\frac{4020}{b-2010}\left(b\ne2010\right)\)

\(\Rightarrow\frac{4018}{a-2009}=\frac{4020}{b-2010}\)

\(\Rightarrow\frac{a-2009}{4018}=\frac{b-2010}{4020}\)

\(\Rightarrow\frac{a-2009}{2009}=\frac{b-2010}{2010}\)

\(\Rightarrow\frac{a}{2009}-1=\frac{b}{2010}-1\)

\(\Rightarrow\frac{a}{2009}=\frac{b}{2010}\)

6 tháng 7 2021

Thanks!

26 tháng 2 2019

Làm ơn giúp mk!!

26 tháng 2 2019

\(\frac{b-2011}{c-2010}:\frac{2011-b}{2010-c}=\frac{b-2011}{c-2010}\cdot\frac{-\left(c-2010\right)}{-\left(b-2011\right)}=1\)

\(\frac{a-2009}{b-2011}=\frac{2010-c}{2009-a}=\frac{-\left(c-2010\right)}{-\left(a-2009\right)}=\frac{c-2010}{a-2009}=1\Rightarrow a-2009=c-2010=b-2011\)

\(\Rightarrow a=c-1=b-2\Rightarrow c=b-1\Rightarrow\frac{b}{c}=\frac{b}{b-1}\)=.=' ko chắc lăm

2 tháng 10 2015

vi \(\frac{-2009}{2010}>\frac{-2010}{1010}=1\)

\(\frac{2010}{-2009}=\frac{-2010}{2009}

27 tháng 9 2016

+ \(\frac{a}{2009}=\frac{b}{2010}\Leftrightarrow2010a=2009b.\)(1)

+ \(\frac{a+2009}{a-2009}=\frac{b+2010}{b-2010}\Rightarrow\left(a+2009\right)\left(b-2010\right)=\left(a-2009\right)\left(b+2010\right)\)

\(\Rightarrow ab-2010a+2009b-2009.2010=ab+2010a-2009b-2009.2010\)

\(\Leftrightarrow2.2009.b=2.2010.a\Leftrightarrow2010a=2009b\)(2)

Từ (1) và (2) => dpcm

17 tháng 9 2018

a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)

\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)

\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)

\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\)    (1)

Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)

Nên biểu thức (1) xảy ra khi \(x+2013=0\)

\(x=-2013\)

b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)  (2)

Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)

Nên biểu thức (2) xảy ra khi \(x-2011=0\)

\(x=2011\)

4 tháng 4 2018

Mọi người giúp mik nha  ^_^

19 tháng 2 2020

Ta có: \(P\left(x\right)+Q\left(x\right)=2\left(1+x^2+x^4+...+x^{2010}\right)\)

\(\Rightarrow P\left(\frac{1}{2}\right)+Q\left(\frac{1}{2}\right)=2\left(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{2010}}\right)\)

Đặt \(K=\left(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{2010}}\right)\)

\(\Rightarrow\frac{1}{2^2}K=\left(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{2012}}\right)\)

\(\Rightarrow K-\frac{1}{2^2}K=1-\frac{1}{2^{2012}}\)

\(\Rightarrow\frac{3}{4}K=1-\frac{1}{2^{2012}}\)

\(\Rightarrow K=\frac{4}{3}-\frac{1}{3.2^{2010}}\)

Lúc đó \(P\left(\frac{1}{2}\right)+Q\left(\frac{1}{2}\right)=2\left(\frac{4}{3}-\frac{1}{3.2^{2010}}\right)=\frac{8}{3}-\frac{1}{3.2^{2009}}\)

\(=\frac{2^{2012}-1}{3.2^{2009}}\)

Ta thấy \(2^{2012}-1=2^{4.503}-1=\overline{...6}-1=\overline{...5}⋮5\)

Mà 3 . 22009 không chia hết cho 5 nên khi ta rút gọn \(\frac{2^{2012}-1}{3.2^{2009}}\)đến dạng tối giản thì a vẫn chia hết cho 5.

Vậy \(a⋮5\left(đpcm\right)\)