Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(\left|a\right|\ge0\Rightarrow b^5-b^4c\ge0\Rightarrow b^5\ge b^4c\Rightarrow b\ge c\)
Với \(b< 0\Rightarrow c< 0\left(KTM\right)\)
Với \(b=0\Rightarrow\left|a\right|=0\Rightarrow a=0\left(KTM\right)\)
Với \(b>0\Rightarrow a< 0\left(h\right)a=0\)
+) Với \(a=0\Rightarrow b-c=0\Rightarrow b=c>0\left(KTM\right)\)
+) Với \(a< 0\Rightarrow b>0;c=0\)
zZz Cool Kid zZz bài bạn có ý đúng nhưng vẫn sai một số lỗi
-) b ko thể bằng c
-) b=0 => |a|=0 là sai, vì b=0 nếu c âm thì -c vẫn dương => a > 0 vẫn tm
-) ở dòng thứ 5, b=c cùng lớn hơn 0 nhưng vẫn còn th âm bạn chưa xét
Ta có:\(\left|a\right|=b^4.\left(b-c\right)\)
Vì |a| không âm => b4.(b-c) không âm => b-c không âm vì b4 không âm
Mà trong 3 số a,b,c chỉ có 1 số bằng 0 ,1 số âm, 1 số dương nên b > c => a khác 0
Xét b = 0 vì b>c nên c < 0 => a > 0 (tm) vì trong 3 số a,b,c chỉ có 1 số bằng 0 ,1 số âm, 1 số dương
Xét c = 0 vì b>c nên b>0 => a<0 (tm) vì trong 3 số a,b,c chỉ có 1 số bằng 0 ,1 số âm, 1 số dương
Vậy ... (tự kết luận)
a, \(\dfrac{515}{605}\) < \(\dfrac{515+1}{605+1}\) = \(\dfrac{516}{606}\) vậy \(\dfrac{515}{605}< \dfrac{516}{606}\)
b, - \(\dfrac{2}{3}\) và \(\dfrac{3}{-2}\) Vì - \(\dfrac{2}{3}\) > -1; \(\dfrac{3}{-2}\) < - 1 Vậy - \(\dfrac{2}{3}\) > \(\dfrac{3}{-2}\)
c, - \(\dfrac{17}{16}\) và \(\dfrac{30}{7}\) vì - \(\dfrac{17}{16}\) < 0 < \(\dfrac{30}{7}\) nên - \(\dfrac{17}{16}\) < \(\dfrac{30}{7}\)
d, - \(\dfrac{16}{279}\) và - \(\dfrac{16}{217}\) vì \(\dfrac{16}{279}\) < \(\dfrac{16}{217}\) nên - \(\dfrac{16}{279}\) > - \(\dfrac{16}{217}\)
Để so sánh các số hữu tỉ, chúng ta có thể chuyển về cùng một mẫu số và so sánh tử số.
So sánh 515/605 và 516/606:
Để chuyển về cùng mẫu số, ta nhân cả tử và mẫu của cả hai phân số với 1001 (là tích của 11 và 91).
515/605 = (515 * 1001) / (605 * 1001) = 515515 / 605605
516/606 = (516 * 1001) / (606 * 1001) = 516516 / 606606
Vì 515515 < 516516, và 605605 < 606606, nên ta có: 515/605 < 516/606.
So sánh -2/3 và 3/-2:
Để chuyển về cùng mẫu số, ta nhân cả tử và mẫu của cả hai phân số với -1.
-2/3 = (-2 * -1) / (3 * -1) = 2 / -3
3/-2 = (3 * -1) / (-2 * -1) = -3 / 2
Vì 2 > -3, và -3 < 2, nên ta có: -2/3 > 3/-2.
So sánh -17/16 và 30/7:
Để chuyển về cùng mẫu số, ta nhân cả tử và mẫu của cả hai phân số với 112 (là tích của 16 và 7).
-17/16 = (-17 * 112) / (16 * 112) = -1904 / 1792
30/7 = (30 * 112) / (7 * 112) = 3360 / 784
Vì -1904 < 3360, và 1792 > 784, nên ta có: -17/16 < 30/7.
So sánh -16/279 và -16/217:
Để chuyển về cùng mẫu số, ta không cần thay đổi gì vì cả hai phân số đã có cùng mẫu số.
-16/279 và -16/217 có cùng tử số và mẫu số, nên chúng bằng nhau: -16/279 = -16/217.
Tóm lại:
515/605 < 516/606
-2/3 > 3/-2
-17/16 < 30/7
-16/279 = -16/217
\(-\frac{13}{15}+-\frac{2}{15}=-1;-\frac{14}{16}+-\frac{2}{16}\)
Vì \(-\frac{2}{15}< -\frac{2}{16}\Rightarrow\frac{-13}{15}< -\frac{14}{16}\)
2.Gọi 3 p/số đó là x;y;z
\(-\frac{5}{8}< x< y< z< -\frac{3}{5}\)
\(-\frac{100}{160}< x< y< z< -\frac{96}{160}\)
\(\Rightarrow x=-\frac{99}{160};y=-\frac{98}{160}=-\frac{49}{80};z=-\frac{97}{160}\)
\(\dfrac{97}{100}\) và \(\dfrac{98}{99}\)
\(\dfrac{97}{100}=\dfrac{97\times99}{100\times99}=\dfrac{9603}{9900}\)
\(\dfrac{98}{99}=\dfrac{98\times100}{99\times100}=\dfrac{9800}{9900}\)
Vì: \(9603< 9800\) nên => \(\dfrac{97}{100}< \dfrac{98}{99}\)
\(\dfrac{13}{17}\) và \(\dfrac{131}{171}\)
\(\dfrac{13}{17}=\dfrac{13\times171}{17\times171}=\dfrac{2223}{2907}\)
\(\dfrac{131}{171}=\dfrac{131\times17}{171\times17}=\dfrac{2227}{2907}\)
Vì: \(2227>2223\) nên: => \(\dfrac{13}{17}< \dfrac{131}{171}\)
\(\dfrac{51}{61}\) và \(\dfrac{515}{616}\)
\(\dfrac{51}{61}=\dfrac{51\times616}{61\times616}=\dfrac{31416}{37576}\)
\(\dfrac{515}{616}=\dfrac{515\times61}{616\times61}=\dfrac{31415}{37576}\)
Vì: \(31416>31415\) Nên => \(\dfrac{51}{61}>\dfrac{515}{616}\)
a/
$\frac{97}{100}< \frac{98}{100}< \frac{98}{99}$
c/
$\frac{131}{171}=1-\frac{40}{171}> 1-\frac{40}{170}=1-\frac{4}{17}=\frac{13}{17}$
d/
$\frac{51}{61}=1-\frac{10}{61}=1-\frac{100}{610}$
$\frac{515}{616}=1-\frac{101}{616}$
Xét hiệu:
$\frac{100}{610}-\frac{101}{616}=\frac{100.616-101.610}{610.616}$
$=\frac{100(610+6)-101.610}{610.616}$
$=\frac{600-610}{610.616}<0$
$\Rightarrow \frac{100}{610}< \frac{101}{616}$
$\Rightarrow 1-\frac{100}{610}> 1-\frac{101}{616}$
$\Rightarrow \frac{51}{61}> \frac{515}{616}$