K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2015

\(A=\frac{10}{a^m}+\frac{10}{a^n}\)

\(B=\frac{11}{a^m}+\frac{11}{a^n}=\left(\frac{10}{a^m}+\frac{10}{a^n}\right)+\left(\frac{1}{a^m}+\frac{1}{a^n}\right)\)

Vậy A < B

chọn đúng nhé !

 

Sửa đề: B=11^87+1/11^88+1

\(11A=\dfrac{11^{90}+11}{11^{90}+1}=1+\dfrac{10}{11^{90}+1}\)

\(11B=\dfrac{11^{88}+11}{11^{88}+1}=1+\dfrac{10}{11^{88}+1}\)

mà 11^90>11^88

nên A<B

14 tháng 2 2016

bai toan nay kho

9 tháng 2 2023

\(A=\dfrac{10^{11}+1}{10^{12}-1}\)

\(\Rightarrow10A=\dfrac{10^{11}+1}{10^{12}-1}.10\)

\(\Rightarrow10A=\dfrac{10\left(10^{11}+1\right)}{10^{12}-1}\)

\(\Rightarrow10A=\dfrac{10^{12}-10}{10^{12}-1}\)

\(B=\dfrac{10^{10}+1}{10^{11}+1}\)

\(\Rightarrow10B=\dfrac{10^{10}+1}{10^{11}+1}.10\)

\(\Rightarrow10B=\dfrac{\left(10^{10}+1\right).10}{10^{11}+1}\)

\(\Rightarrow10B=\dfrac{10^{11}+10}{10^{11}+1}\)

Ta thấy:

 \(10^{12}-1>10^{12}-10>0\Rightarrow10A< 1\)

\(0< 10^{11}+1< 10^{11}+10\Rightarrow10B>1\)

Mà \(10A< 1;10B>1\)

\(\Rightarrow B>A\).

8 tháng 6 2017

a) Ta có :

\(\frac{7}{9}< 1\)\(\frac{19}{17}>1\)

Vì \(\frac{7}{9}< 1< \frac{19}{17}\)nên \(\frac{7}{9}< \frac{19}{17}\)

b) Xét phân số trung gian là \(\frac{n}{n+2}\)

Vì \(\frac{n}{n+3}< \frac{n}{n+2}\)và \(\frac{n}{n+2}< \frac{n+1}{n+2}\)

\(\Rightarrow\frac{n}{n+3}< \frac{n+1}{n+2}\)

c) Ta có :

\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)

Vậy \(A< B\)

8 tháng 6 2017

a)7/9<1,19/17 => 7/9<19/17.

AH
Akai Haruma
Giáo viên
24 tháng 3 2021

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

24 tháng 3 2021

Cô ơi cho em hỏi là từ 7h - 9h thứ 2 tuần sau tức ngày 29/3 cô có online không ạ ?

27 tháng 1 2023

\(A=\dfrac{10^{12}+6}{10^{12}-11}\)

\(\Rightarrow A=\dfrac{10^{12}-11+17}{10^{12}-11}\)

\(\Rightarrow A=\dfrac{10^{12}-11}{10^{12}-11}+\dfrac{17}{10^{12}-11}\)

\(\Rightarrow A=1-\dfrac{17}{10^{12}-11}\)

\(B=\dfrac{10^{11}+5}{10^{11}-12}\)

\(\Rightarrow B=\dfrac{10^{11}-12+17}{10^{11}-12}\)

\(\Rightarrow B=\dfrac{10^{11}-12}{10^{11}-12}+\dfrac{17}{10^{11}-12}\)

\(\Rightarrow B=1-\dfrac{17}{10^{11}-12}\)

Vậy ta cần so sánh \(1-\dfrac{17}{10^{12}-11}\) và \(1-\dfrac{17}{10^{11}-12}\) 

Ta thấy \(\left(10^{12}-11\right)>\left(10^{11}-12\right)\) và 2 phân số trên cùng tử số 17 nên \(\dfrac{17}{10^{12}-11}< \dfrac{17}{10^{11}-12}\)

Vậy \(1-\dfrac{17}{10^{12}-11}>1-\dfrac{17}{10^{11}-12}\) hay \(A>B\)

28 tháng 1 2023

Cảm ơn bạn nhé!

6 tháng 1 2016

 B/A= [(10^10 + 1)/(10^11 + 1)]/[(10^11 - 1)/(10^12 - 1)] 
= [(10^12 - 1).(10^10 + 1)]/[(10^11 - 1).(10^11 + 1)] 
= [(10^22 - 1) + (10^12 - 10^10) ]/((10^22 - 1) 
= 1 + (10^12 - 10^10)/(10^22 - 1) > 1 
=> B > A

6 tháng 1 2016

 A=10^11-1/10^12-1 < B=10^10+1/10^11=1.

19 tháng 1 2022

2/

a/ \(\dfrac{7}{10}=\dfrac{7.15}{10.15}=\dfrac{105}{150}\)

\(\dfrac{11}{15}=\dfrac{11.10}{15.10}=\dfrac{110}{150}\)

-Vì \(\dfrac{105}{150}< \dfrac{110}{150}\)(105<110)nên \(\dfrac{7}{10}< \dfrac{11}{15}\)

b/ \(\dfrac{-1}{8}=\dfrac{-1.3}{8.3}=\dfrac{-3}{24}\)

-Vì \(\dfrac{-3}{24}>\dfrac{-5}{24}\left(-3>-5\right)\)nên\(\dfrac{-1}{8}>\dfrac{-5}{24}\)

c/\(\dfrac{25}{100}=\dfrac{25:25}{100:25}=\dfrac{1}{4}\)

\(\dfrac{10}{40}=\dfrac{10:10}{40:10}=\dfrac{1}{4}\)

-Vì \(\dfrac{1}{4}=\dfrac{1}{4}\)nên\(\dfrac{25}{100}=\dfrac{10}{40}\)

19 tháng 1 2022

a/ \(\dfrac{7}{10}< \dfrac{11}{15}\)

c/ \(\dfrac{25}{100}=\dfrac{10}{40}\)