Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$1990^{10}+1990^9=1990^9(1990+1)=1991.1990^9< 1991.1991^9=1991^{10}$
-----------------------
$10^{10}=(10^2)^5=100^5=(2.50)^5=2^5.50^5=32.50^5< 48.50^5$
------------------------
$11^{1979}< 11^{1980}=(11^3)^{660}=1331^{660}$
$37^{1320}=(37^2)^{660}=1369^{660}> 1331^{660}$
$\Rightarrow 11^{1979}< 37^{1320}$
\(A=\dfrac{2021^{10}-2021+2020}{2021^9-1}\\ =\dfrac{2021\left(2021^9-1\right)+2020}{2021^9-1}\\ =2021+\dfrac{2020}{2021^9-1}\\ B=\dfrac{2021^{11}-1}{2021^{10}-1}=2021+\dfrac{2020}{2021^{10}-1}\)
Ta có:
\(2021^9-1< 2021^{10}-1\\ \Rightarrow\dfrac{2020}{2021^9-1}>\dfrac{2020}{2021^{10}-1}\)
Do đó A > B.
Ta có thể thấy:
\(\frac{11}{29};\frac{9}{17};\frac{10}{19}< \frac{2}{3}\)
\(\Rightarrow\frac{11}{29}+\frac{9}{17}+\frac{10}{19}< 3\times\frac{2}{3}=2\)
Chúc bn hok tốt
a, Vì N nằm giữa A và M
=> AN + NM = AM
=> NM = AM - AN = 8 - 4 = 4cm
=> AN = MN (=4cm)
b, Vì A nằm giữa E và N
=> EA + AN = EN
=> EN = 2 + 4 = 6cm
Vì N nằm giữa E và M
=> EN + NM = EM
=> EM = 6 + 4 = 10cm
Vì 102005 + 1 < 102006 + 1 nên 1/102005 + 1 > 1/102006 + 1
=> 102004 + 1/102005 + 1 > 102004 + 1/102006 + 1
=> A > B