K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
QA
2
D
9 tháng 4 2017
a) Với a>b thì => (a+n).b=ab+bn>ab+an=a(b+n)=>(a+n).b>a.(b+n)
=> \(\frac{a+n}{b+n}>\frac{a}{b}\)
Với b>a thì chứng minh tương tự ta được \(\frac{a+n}{b+n}< \frac{a}{b}\)
Với a=b thì chứng minh tương tự ta được \(\frac{a+n}{b+n}=\frac{a}{b}\)
9 tháng 4 2017
cho \(A=\frac{10^{11}-1}{10^{12}-1}\) và \(B=\frac{10^{10}+1}{10^{11}+1}\)
giải
Ta có
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(\Rightarrow10.A=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
\(\Rightarrow10.B=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
VÌ 10.B > 1 và 10.A < 1
=> 10.B > 10.A
=> B > A
vậy A < B
a) Ta có :
\(\frac{7}{9}< 1\); \(\frac{19}{17}>1\)
Vì \(\frac{7}{9}< 1< \frac{19}{17}\)nên \(\frac{7}{9}< \frac{19}{17}\)
b) Xét phân số trung gian là \(\frac{n}{n+2}\)
Vì \(\frac{n}{n+3}< \frac{n}{n+2}\)và \(\frac{n}{n+2}< \frac{n+1}{n+2}\)
\(\Rightarrow\frac{n}{n+3}< \frac{n+1}{n+2}\)
c) Ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)
Vậy \(A< B\)
a)7/9<1,19/17 => 7/9<19/17.