Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)
\(7^2=49=7+42\)
mà \(15+2\sqrt{105}< 42\)
nên \(\sqrt{7}+\sqrt{15}< 7\)
b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)
\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)
mà \(2\sqrt{22}< 15+10\sqrt{3}\)
nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)
\(a,\left(\sqrt{2}+\sqrt{11}\right)^2=12+2\sqrt{22}\\ \left(\sqrt{3}+5\right)^2=28+10\sqrt{3}\)
Ta thấy \(12< 28;2\sqrt{22}=\sqrt{88}< \sqrt{300}=10\sqrt{3}\)
Nên \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)
\(b,\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\\ \left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)
Vì \(\sqrt{105}< \sqrt{120}\Rightarrow-2\sqrt{105}>-2\sqrt{120}\)
Nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
a: \(\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\)
\(\left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)
mà \(-2\sqrt{105}>-2\sqrt{120}\)
nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
b: \(\left(\sqrt{2}+\sqrt{8}\right)^2=10+2\cdot4=16=12+4\)
\(\left(3+\sqrt{3}\right)^2=12+6\sqrt{3}\)
mà \(4< 6\sqrt{3}\)
nên \(\sqrt{2}+\sqrt{8}< 3+\sqrt{3}\)
b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)
Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)
Từ biểu thức (1) và biểu thức (2)
=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)
\(\left\{{}\begin{matrix}a=\dfrac{35}{49}=\dfrac{5}{7}\\b=\sqrt{\dfrac{5^2}{7^2}}=\dfrac{5}{7}\\c=\dfrac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\dfrac{5+35}{7+49}=\dfrac{5}{7}\\d=\dfrac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\dfrac{5-35}{7-49}=\dfrac{5}{7}\end{matrix}\right.\)
\(\Rightarrow a=b=c=d=\dfrac{5}{7}\)
\(a=\dfrac{35}{49};b=\dfrac{5}{7}\\ c,=\dfrac{5+35}{7+49}=\dfrac{12}{14}=\dfrac{6}{7}\\ d,=\dfrac{5-35}{7-49}\)
Áp dụng t/c dtsbn:
\(\dfrac{5}{7}=\dfrac{35}{49}=\dfrac{5+35}{7+49}=\dfrac{5-35}{7-49}\) hay \(a=b=c=d\)
\(\sqrt{7}+\sqrt{15}<\sqrt{9}+\sqrt{16}=3+4=7\Rightarrow\sqrt{7}+\sqrt{15}<7\)
\(\sqrt{2}+\sqrt{11}<\sqrt{3}+\sqrt{25}=\sqrt{3}+5\Rightarrow\sqrt{2}+\sqrt{11}<\sqrt{3}+5\)
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\Rightarrow\sqrt{17}+\sqrt{26}+1>10\)
\(\sqrt{99}<\sqrt{100}=10\Rightarrow\sqrt{99}<10\)
Nên \(\sqrt{17}+\sqrt{26}+1>10\)