Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1-1/(2013*2014)
B=1-1/(2014*2015)
2013*2014<2014*2015
=>1/2013*2014>1/2014*2015
=>-1/2013*2014<-1/2014*2015
=>A<B
Ta có :
\(\frac{2014^{2015}+1}{2014^{2015}+1}\)\(=1\)
\(\frac{2014^{2014}+1}{2014^{2013}+1}\)\(>1\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
A = \(\frac{2013}{2014}+\frac{2014}{2015}>\frac{1}{2}+\frac{1}{2}=1\)
\(B=\frac{2013+2014+2015}{2014+2015+2016}<1\)
\(Vậy:A>B\)
Đúng nha Nguyễn Bình Minh
so sánh:
\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\) và\(B=\) \(\frac{2013+2014+2015}{2014+2015+2016}\)
\(B=\frac{2013}{2014+2015+2016}+\frac{2014}{2014+2015+2016}+\frac{2015}{2014+2015+2016}\)
Ta có: \(\frac{2013}{2014}>\frac{2013}{2014+2015+2016}\)
\(\frac{2014}{2015}>\frac{2014}{2014+2015+2016}\)
\(\frac{2015}{2016}>\frac{2015}{2014+2015+2016}\)
\(\Rightarrow\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}>\frac{2013+2014+2015}{2014+2015+2016}\)
Vậy: \(A>B\)
Ta có:
A=92013+1/92014+1
9A=92014+9/92014+1
=(92014+1/92014+1)+(8/92014+1)
=1+8/92014+1
B=92014+1/92015+1
9B=92015+9/92015+1
=(92015+1/92015+1)+(8/92015+1)
=1+8/92015+1
Vì 8/92014+1 > 8/92015+1 nên A>B
**** bạn
Có \(2004A=\frac{2014^{2015}+2014}{2014^{2015}+1}=\frac{2014^{2015}+1+2013}{2014^{2015}+1}=1+\frac{2013}{2014^{2015}+1}\)
\(2014B=\frac{2014^{2014}+2014}{2014^{2014}+1}=\frac{2014^{2014}+1+2013}{2014^{2014}+1}=1+\frac{2013}{2014^{2014}+1}\)
Vì \(\frac{2013}{2014^{2015}+1}< \frac{2013}{2014^{2014}+1}\)
=> \(1+\frac{2013}{2014^{2015}+1}< 1+\frac{2013}{2014^{2014}+1}\)
=> \(A< B\)
SDFGHJI