K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2015

thì mới nói nếu dấu chia trừ mũ là xong

ý mà không được vậy mũ ra âm 1 à

ồ được bằng 1/2010

16 tháng 5 2018

Ta có:

A = 2017 2018 + 2018 2019 > 2010 2011 + 2011 2012 = 2010 + 2011 2012 > 2010 + 2011 2011 + 2012 = B

Vậy  A > B

30 tháng 10 2017

8 tháng 12 2018

a ) T a   c ó : 2009 2010 + 1 2010 = 2010 2011 + 1 2011 = 1

M à     1 2010 > 1 2011     n ê n     2009 2010 < 2010 2011

b ) T a   c ó : − 199 200 + − 1 200 = − 200 201 + − 1 201 = − 1 M à     − 1 200 < − 1 201     n ê n     − 199 200 > − 200 201

c ) T a   c ó : 103 107 + 4 107 = 113 117 + 4 117 = 1 M à     4 107 < 4 117     n ê n     103 107 < 113 117

d ) T a   c ó : − 211 137 + − 63 137 = − 291 177 + − 63 177 = − 2 M à     − 63 137 < − 63 177     n ê n     − 211 137 > − 291 177

 

4 tháng 7 2015

Bài 1. Do a, b là 2 số nguyên khác nhau. Không làm mất tính tổng quát, giả sử a>b.
Khi đó a-b > 0 và b-a < 0. Suy ra (a-b)(b-a) < 0 (Tích của một số nguyên dương với một số nguyên âm là một số nguyên âm).
Bài 2. Để xy(x+y) = -20102011 => x, y thuộc Z.

- Xét x, y khác tính chẵn lẻ => xy luôn chẵn => xy(x+y) chẵn. Mà -20102011 lẻ => không tồn tại x,y thỏa mãn đề bài.
- Xét x, y cùng tính chẵn lẻ:

+ Nếu x, y cùng chẵn xy(x+y) luôn chẵn. Mà -20102011 lẻ => không tồn tại x,y thỏa mãn đề bài.
+ Nếu x, y cùng lẻ thì x+y chẵn => xy(x+y) chẵn. Mà -20102011 lẻ => không tồn tại x,y thỏa mãn đề bài.
Vậy không tồn tại x, y thuộc Z thỏa mãn điều kiện đề bài.

Bài 3. Do a, b thuộc N. Ta có:

- Xét a, b khác tính chẵn lẻ => ab luôn chẵn => ab(a+b) chẵn => ab(a+b) luôn chia hết cho 2.

- Xét a, b khác tính chẵn lẻ:

+ Nếu a, b cùng chẵn thì ab(a+b) chẵn => ab(a+b) luôn chia hết cho 2.

+ Nếu a, b cùng lẻ => a+b chẵn => ab(a+b) chẵn => ab(a+b) luôn chia hết cho 2.

Vậy với a, b thuộc N thì ab(a+b) luôn chia hết cho 2.

4 tháng 7 2015

2) ta có xy(x+y)=-20102011

=>x2y+xy2=-20102011

=>(x+y)(x2+y2)=-20102011

=>x3+xy2+yx2+y3=-20102011

=>x,y tồn tại

21 tháng 3 2020

\(xy\left(x+y\right)=-20102011\text{ là số lẻ}\Rightarrow x;y;x+y\text{ đều là số lẻ}\)

\(x+y\text{ lẻ nên 1 trong 2 số là số chẵn số còn lại là lẻ}\Rightarrow\text{vô lí}\)

\(\Rightarrow\text{vô nghiệm với x;y nguyên}\)

18 tháng 2 2019

Ta có:

Nếu trong x;y có ít nhất 1 số chẵn thì \(xy\left(x+y\right)⋮2\),mặt khác \(-20102011⋮̸2\) nên ptvn

Như vậy,cả x;y đều lẻ. Khi đó \(x+y⋮2\)

\(\Rightarrow xy\left(x+y\right)⋮2;-20102011⋮2̸\)

Vậy ptvn

19 tháng 3 2020

Ta có: xy - 2x + y = 3

          x(y-2)+(y-2)=3-2

          (x+1)(y-2)=1=1.1=-1.-1

ta có bảng sau

x+1|  1 |-1

y-2 | 1  | -1 

 x   |   0  |  2

 y |     3 |   1

 Chúc chị học tốt