Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân cả hai tử của \(A\)và \(B\)với 2 , ta được :
\(10A=10.\left(\frac{10^{2016}+1}{10^{2017}+1}\right)=\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{2^{2017}+1}\)
\(10B=10\left(\frac{10^{2017}+1}{10^{2018}+1}\right)=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}}=1+\frac{9}{10^{2018}+1}\)
Vì \(1=1;9=9\)
\(\Rightarrow\)Ta so sánh mẫu , ta có:
\(10^{2017}< 10^{2018}\)
\(\Rightarrow10^{2017}+1< 10^{2018}+1\)
\(\Rightarrow1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)
\(\Rightarrow10A>10B\)
Hay \(A>B\)
\(\frac{10^{2016}+2^3}{9}=\frac{10^{2016}-1}{9}+\frac{2^3+1}{9}=\left(1+10+10^2+...+10^{2015}\right)+1\in N.\)
1/ ta có:
A = \(\frac{10^{2015}+1}{10^{2016}+1}\Rightarrow10A=\frac{10^{2016}+10}{10^{2016}+1}=1+\frac{9}{10^{2016}+1}\)
B = \(\frac{10^{2016}+1}{10^{2017}+1}\Rightarrow10B=\frac{10^{2017}+10}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)
vì \(\frac{9}{10^{2016}+1}>\frac{9}{10^{2017}+1}\) => 10A > 10B
=> A > B
vậy A > B
2/ ta có: M = 5 + 52 + 53 + ... + 52016
=> 5M = 52+53+54+...+52017
=> 5M - M = (52+53+54+...+52017) - (5+52+53+...+52016)
=> 4M = 52017- 5
=> M = \(\frac{5^{2017}-5}{4}\)
vậy M = \(\frac{5^{2017}-5}{4}\)
A- 1 = \(\frac{10^{2015}-1-\left(10^{2016}-1\right)}{10^{2016}-1}=\frac{-9.10^{2015}}{10^{2016}-1}=\frac{-90.10^{2014}}{10^{2016}-1};\)
B- 1 = \(\frac{10^{2014}+1-\left(10^{2015}+1\right)}{10^{2015}+1}=\frac{-9.10^{2014}}{10^{2015}+1};\)
xét \(\frac{A-1}{B-1}=\frac{-90.10^{2014}}{10^{2016}-1}:\frac{-9.10^{2014}}{10^{2015}+1}=\frac{10\left(10^{2015}+1\right)}{10^{2016}-1}=\frac{10^{2016}+10}{10^{2016}-1}>1\)
=> A-1 > B-1 => A > B
Áp dung công thức \(a>b\Leftrightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
\(B=\frac{10^{2017}+1}{10^{2016}+1}>\frac{10^{2017}+1+9}{10^{2016}+1+9}=\frac{10^{2017}+10}{10^{2016}+10}=\frac{10\left(10^{2016}+1\right)}{10\left(10^{2015}+1\right)}=\frac{10^{2016}+1}{10^{2015}+1}=A\)
\(\Leftrightarrow B>A\)