Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu bạn chứng minh được k thuộc N* thì tôi chứng minh được k thuộc z tôi sợ
Gỉa sử f(17)=71 và f(12)=25
=>\(\begin{cases}a.17+b=71\\a.12+b=35\end{cases}\)
=> ( 17a+b)-(12a+b)=71-35
=> 17a+b-12a-b=71-35
=> 5a=36
vid a thuộc Z => 5a\(⋮\)5
=> 36 ko chiia hết cko 5
DO ĐÓ KO THỂ ĐỒNG THỜI CÓ f(17)=71 ; f(12)=35 (ĐPCM)
Giả sử f(17)=71 và f(12)=35 khi có f(x)=ax+b(a,c thuộc Z)
Ta có:
f(17)=a.17+b=71 (1)
và f(12)=a.12+b=35 (2)
Lấy (1) trừ (2) ta được:
f(17)-f(12)=(a.17+b)-(a.12+b)=17a+b-12a-b=5a=36
Vì 5a=36 => a=\(\frac{36}{5}\)(vô lí vì a là số nguyên)
Vậy f(x)=ax+b(a,c là số nguyên 0 thj không xảy ra đồng thời f(17)=71 và f(12)=35(đccm)
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}-\frac{5}{4}\cdot\frac{13}{99}+\frac{5}{99}\cdot\frac{1}{4}\)
\(A=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)-\frac{13}{4}\cdot\frac{5}{99}+\frac{5}{99}\cdot\frac{1}{4}\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{5}{99}\cdot\left(\frac{13}{4}-\frac{1}{4}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)-\frac{5}{99}\cdot3\)
\(A=\frac{1}{2}\cdot\frac{32}{99}-\frac{5}{33}\)
\(A=\frac{16}{99}-\frac{5}{33}=\frac{1}{99}\)