K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

Ta có:

\(A=\dfrac{9}{a^{2013}}+\dfrac{7}{a^{2014}}\)

\(=\left(\dfrac{8}{a^{2013}}+\dfrac{1}{a^{2013}}\right)+\left(\dfrac{8}{a^{2014}}-\dfrac{1}{a^{2014}}\right)\)

\(=\left(\dfrac{8}{a^{2013}}+\dfrac{8}{a^{2014}}\right)+\left(\dfrac{1}{a^{2013}}-\dfrac{1}{a^{2014}}\right)\)

\(B=\dfrac{8}{a^{2014}}+\dfrac{8}{a^{2013}}\)

\(=\dfrac{8}{a^{2013}}+\dfrac{8}{a^{2014}}\)

\(\dfrac{1}{a^{2013}}>\dfrac{1}{a^{2014}}\Rightarrow\dfrac{1}{a^{2013}}-\dfrac{1}{a^{2014}}>0\)

\(\Rightarrow\left(\dfrac{8}{a^{2013}}+\dfrac{8}{a^{2014}}\right)+\left(\dfrac{1}{a^{2013}}-\dfrac{1}{a^{2014}}\right)>\dfrac{8}{a^{2013}}+\dfrac{8}{a^{2014}}\)

Vậy \(A>B\)

13 tháng 3 2017

Cảm ơn rất rất nhiều

20 tháng 8 2021

2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

              \(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

20 tháng 8 2021

1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)

\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)

Nên suy ra \(10A>10B\Rightarrow A>B\)

17 tháng 8 2021

\(A=-\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{2014^2}\right)\)

\(A=\dfrac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2012\cdot2014\right)\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2013\cdot2013\right)\left(2014\cdot2014\right)}\)

\(A=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot2012\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2014\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)}\)

\(A=\dfrac{1\cdot2015}{2014\cdot2}=\dfrac{2015}{4028}\)

Vì \(\dfrac{2015}{4028}>-\dfrac{1}{2}\) nên A > B

11 tháng 2 2022

Ai trả lời đi please

30 tháng 8 2023

A= 1+(\(\dfrac{1}{2014}\)+1)+(\(\dfrac{2}{2013}\)+1)+...+(\(\dfrac{2013}{2}\)+1)

= \(\dfrac{2015}{2015}\)+(\(\dfrac{1}{2014}\)+1)+(\(\dfrac{2}{2013}\)+1)+...+(\(\dfrac{2013}{2}\)+1)

= 2015.(\(\dfrac{1}{2015}\)+\(\dfrac{1}{2014}\)+\(\dfrac{1}{2013}\)+...+\(\dfrac{1}{2}\))=2015.B

\(\Rightarrow\) \(\dfrac{A}{B}\)=2015

Ta có : 

A=\(\frac{9}{a^{2013}}+\frac{7}{a^{2014}}\)

  =\(\left(\frac{8}{a^{2013}}+\frac{1}{a^{2013}}\right)+\left(\frac{8}{a^{2014}}-\frac{1}{a^{2014}}\right)\)

=\(\left(\frac{8}{a^{2013}}+\frac{8}{a^{2014}}\right)+\left(\frac{1}{a^{2013}}-\frac{1}{a^{2014}}\right)\)

B=\(\frac{8}{a^{2014}}+\frac{8}{a^{2013}}\)

  =\(\frac{8}{a^{2013}}+\frac{8}{a^{2014}}\)

 Vì \(\frac{1}{a^{2013}}>\frac{1}{a^{2014}}\)nên\(\frac{1}{a^{2013}}-\frac{1}{a^{2014}}>0\)

=> \(\left(\frac{8}{a^{2013}}+\frac{8}{a^{2014}}\right)+\left(\frac{1}{a^{2013}}-\frac{1}{a^{2014}}\right)>\frac{8}{a^{2013}}+\frac{8}{a^{2014}}\)

Vậy \(A>B\)

Chúc em học tốt

#Thiên_Hy

3 tháng 5 2019

\(A=\frac{9}{a^{2013}}+\frac{7}{a^{2014}}=\frac{8}{a^{2013}}+\frac{1}{a^{2013}}+\frac{7}{a^{2014}}\)

\(B=\frac{8}{a^{2014}}+\frac{8}{a^{2013}}=\frac{7}{a^{2014}}+\frac{1}{a^{2014}}+\frac{8}{a^{2013}}\)

Ta thấy :

\(\frac{8}{a^{2013}}=\frac{8}{a^{2013}}\)

\(\frac{7}{a^{2014}}=\frac{7}{a^{2014}}\)

\(\frac{1}{a^{2013}}>\frac{1}{a^{2014}}\left(a^{2013}< a^{2014}\right)\)

\(\Rightarrow A>B\)

8 tháng 4 2017

Thầy phynit, cô @Cẩm Vân Nguyễn Thị, các bạn hok giỏi Toán: @Nguyễn Huy Tú, @Nguyễn Trần Thành Đạt, ..................

Giups em vs

8 tháng 4 2017

tớ biết làm bài này

Hình như cậu ko cân mk

6 tháng 3 2019

\(a,\frac{20132013}{20142014}=\frac{2013.10001}{2014.10001}=\frac{2013}{2014}=1-\frac{1}{2014};\frac{131313}{141414}=\frac{13.10101}{14.10101}=\frac{13}{14}=1-\frac{1}{14}.\text{Vì: 14 bé hơn 2014 nên:}\frac{1}{14}>\frac{1}{2014}\Rightarrow\frac{20132013}{20142014}>\frac{131313}{141414}\)

6 tháng 3 2019

\(C=2013^9+2013^9.2013=2013^9\left(2013+1\right)=2013^9.2014;D=2014^9.2014\text{ vì: 2013^9< 2014^9 nên: C bé thua D }\)

\(c,M=\frac{-7}{10^{2005}}+\frac{-15}{10^{2006}}=\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}+\frac{-8}{10^{2006}};N=\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}+\frac{-8}{10^{2005}}.Vì:10^{2006}>10^{2005}.Nên:\frac{-8}{10^{2006}}>\frac{-8}{10^{2005}}\Rightarrow M>N\)

19 tháng 7 2017

Thế bạn có làm được không Võ Nguyễn Anh Thư? Trả lời thì trả lời câu hỏi ý, trả lời cái đấy để làm gì?

19 tháng 7 2017

Ace Legona, Hoàng Thị Ngọc Anh, ... giúp mình câu này với!

10 tháng 5 2021

a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)

b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)