Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\dfrac{2323}{9999}=\dfrac{23.101}{99.101}=\dfrac{23}{99}\)
\(\dfrac{232323}{999999}=\dfrac{23.10101}{99.10101}=\dfrac{23}{99}\)
\(\Rightarrow\dfrac{2323}{9999}=\dfrac{232323}{999999}\)
\(a,\dfrac{-15}{17}=-1+\dfrac{2}{17}\\ -\dfrac{19}{21}=-1+\dfrac{2}{21}\\ Vì:\dfrac{2}{17}>\dfrac{2}{21}\Rightarrow-1+\dfrac{2}{17}>-1+\dfrac{2}{21}\Rightarrow-\dfrac{15}{17}>-\dfrac{19}{21}\\ b,-\dfrac{24}{35}=-1+\dfrac{11}{35};-\dfrac{19}{30}=-1+\dfrac{11}{30}\\ Vì:\dfrac{11}{35}< \dfrac{11}{30}\Rightarrow-1+\dfrac{11}{35}< -1+\dfrac{11}{30}\\ \Rightarrow-\dfrac{24}{35}< -\dfrac{19}{30}\)
a.Ta có \(\dfrac{2323}{9999}=\dfrac{2323:101}{9999:101}=\dfrac{23}{99}\)
\(\dfrac{232323}{999999}=\dfrac{232323:10101}{999999:10101}=\dfrac{23}{99}\)
Vậy\(\dfrac{23}{99}=\dfrac{2323}{9999}=\dfrac{232323}{999999}\)(Vì cùng bằng \(\dfrac{23}{99}\))
Lời giải:
\(A=1.3.5.7...99=\frac{1.2.3.4...99.100}{2.4.6.8.100}=\frac{1.2.3...99.100}{(1.2)(2.2)(3.2)...(50.2)}\)
\(=\frac{1.2.3...99.100}{(1.2.3...50).2^{50}}=\frac{51.52...100}{2^{50}}=\frac{51}{2}.\frac{52}{2}....\frac{100}{2}=B\)
a)
\(\dfrac{111}{37}=3< x< \dfrac{91}{13}=7\)
Vậy x = {4;5;6}
b)
\(-\dfrac{84}{14}=-6< 3x< \dfrac{108}{9}=12\Leftrightarrow-2< x< 4\)
Vậy x = {-1;0;1;2;3}
a, Ta có : \(\dfrac{111}{37}< x< \dfrac{91}{13}\)
\(\Rightarrow3< x< 7\)
Mà x là số nguyên .
\(\Rightarrow x\in\left\{4;5;6\right\}\)
b, Ta có : \(-\dfrac{84}{14.3}< x< \dfrac{108}{9.3}\)
\(\Rightarrow-2< x< 4\)
Mà x là số nguyên .
\(\Rightarrow x\in\left\{-1;0;1;2;3\right\}\)
Bài 1:
1: \(17A=\dfrac{17^{19}+17}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)
\(17B=\dfrac{17^{18}+17}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)
mà \(17^{19}+1>17^{18}+1\)
nên 17A>17B
hay A>B
2: \(C=\dfrac{98^{99}+98^{10}+1-98^{10}}{98^{89}+1}=98^{10}+\dfrac{1-98^{10}}{98^{89}+1}\)
\(D=\dfrac{98^{98}+98^{10}+1-98^{10}}{98^{88}+1}=98^{10}+\dfrac{1-98^{10}}{98^{88}+1}\)
mà \(98^{89}+1>98^{88}+1\)
nên C>D
a) Ta có:
\(\frac{232323}{999999}=\frac{23.10101}{99.10101}=\frac{23}{99}\)
Vì : \(\frac{23}{99}=\frac{23}{99}\\ =>\frac{23}{99}=\frac{232323}{999999}\)
b) \(-\frac{63}{84}=-\frac{3}{4}\\ \frac{65}{-91}=-\frac{5}{7}\)
Vì: \(-\frac{3}{4}< -\frac{5}{7}\\ =>-\frac{63}{84}< \frac{65}{-91}\)
c) Ta có: \(\frac{111}{115}=1-\frac{4}{115}\\ \frac{555}{559}=1-\frac{4}{559}\)
Vì: \(\frac{4}{115}>\frac{4}{559}\\ =>1-\frac{4}{115}< 1-\frac{4}{559}\\ =>\frac{111}{115}< \frac{555}{559}\)
a) \(\dfrac{23}{99}\) và \(\dfrac{232323}{999999}\)
* Giữ nguyên \(\dfrac{23}{99}\).
* Rút gọn \(\dfrac{232323}{999999}=\dfrac{23}{99}\).
Vì \(\dfrac{23}{99}=\dfrac{23}{99}\) nên \(\dfrac{23}{99}=\dfrac{232323}{999999}\)
Vậy \(\dfrac{23}{99}=\dfrac{232323}{999999}\).
b) \(\dfrac{-63}{84}\) và \(\dfrac{65}{-91}\)
\(\circledast\) Rút gọn:
\(\dfrac{-63}{84}=\dfrac{-3}{4}\) ; \(\dfrac{65}{-91}=\dfrac{-5}{7}\)
\(\circledast\) Quy đồng:
Mẫu chung: 28
\(\dfrac{-3}{4}=\dfrac{-3.7}{4\cdot7}=\dfrac{-21}{28}\)
\(\dfrac{-5}{7}=\dfrac{-5\cdot4}{7\cdot4}=\dfrac{-20}{28}\)
Vì \(\dfrac{-21}{28}< \dfrac{-20}{28}\) nên \(\dfrac{-63}{84}< \dfrac{65}{-91}\).
Vậy \(\dfrac{-63}{84}< \dfrac{65}{-91}\).
c) \(\dfrac{111}{115}\) và \(\dfrac{555}{559}\)
\(\dfrac{111}{115}=1-\dfrac{4}{115}\) ; \(\dfrac{555}{559}=1-\dfrac{4}{559}\)
Vì \(\dfrac{4}{115}>\dfrac{4}{559}\)
\(\Rightarrow\) \(1-\dfrac{4}{115}< 1-\dfrac{4}{559}\)
\(\Rightarrow\) \(\dfrac{111}{115}< \dfrac{555}{559}\)
Vậy \(\dfrac{111}{115}< \dfrac{555}{559}\).