Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(35\times17+84\times35-35\)
\(=35\times\left(17+84-1\right)\)
\(=35\times100=3500\)
b) \(\frac{5}{2}\times\frac{1}{3}-\frac{1}{4}=\frac{5}{6}-\frac{1}{4}=\frac{7}{12}\)
c) \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2016}{2017}.\frac{2017}{2018}\)
\(=\frac{1}{2018}\)
a)35x17+84x35-35
=35x(17+84-1)
=35x100
=3500
b)5/2x1/3-1/4
=5/6-1/4
=7/12
c)(1-1/2)x(1-1/3)x(1-1/4)x......x(1-1/2018)
=1/2x2/3x3/4x...x2017/2018
=1/2018
bạn cứ chép thế ko hiểu thì thôi
Ta có:
\(\frac{2017}{2019}=1-\frac{2}{2019}\)
\(\frac{2018}{2020}=1-\frac{2}{2020}\)
Vì \(\frac{2}{2019}>\frac{2}{2020}\)
=> \(1-\frac{2}{2019}>1-\frac{2}{2020}\)
=> \(\frac{2017}{2019}>\frac{2018}{2020}\)
#)Giải :
Ta có :
\(1-\frac{2018}{2019}=\frac{1}{2019}\)
\(1-\frac{2015}{2017}=\frac{2}{2017}\)
\(\frac{1}{2019}< \frac{2}{2017}\Rightarrow\frac{2018}{2019}< \frac{2015}{2017}\)
\(A=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}=\left(1-\frac{1}{2017}\right)+\left(1-\frac{1}{2018}\right)+\left(1-\frac{1}{2019}\right)\)
\(A=3-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)< 3\)
Ta có :
2016/2017 < 1
2017/2018 < 1
2018/2019 < 1
Mà 2016/2017 + 2017/2018 + 2018/2019 < 1 + 1 + 1 = 3
Nên A < 3
\(A=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)
Ta có:
\(\frac{2016}{2017}< 1\)
\(\frac{2017}{2018}< 1\)
\(\frac{2018}{2019}< 1\)
\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}< 1+1+1=3\)
\(\Rightarrow A< 3\)
Vậy \(A< 3\)
Tham khảo nhé
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)
\(=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}\)
\(=\left(1+1+1\right)-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)
\(=3-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)< 3\)
Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}< 3\left(đpcm\right)\)
#)Giải :
\(Q=2+\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
Ta thấy : \(2>\frac{2016}{2017};2>\frac{2017}{2018};2>\frac{2018}{2019}\left(1\right)\)
\(\frac{2016}{2017+2018+2019}< \frac{2016}{2017}\left(2\right)\)
\(\frac{2017}{2017+2018+2019}< \frac{2017}{2018}\left(3\right)\)
\(\frac{2018}{2017+2018+2019}< \frac{2018}{2019}\left(4\right)\)
Từ (1) (2) (3) (4) \(\Rightarrow P>Q\)
\(A=\frac{2017.2018-1}{2017.2018}=1-\frac{1}{2017.2018}\)(1)
\(B=\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)(2)
Từ(1) và (2)
\(\Rightarrow B>A\)