Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tại sao 2^299 và 3^199 bé như thế mà 2^299 là số chẵn mà. nhưng cũng cảm ơn bạn nhé
5^299 < 5^300 = (5^2)^150 = 25^150
3^501 = (3^3)^167 = 27^167
=> 27^167 > 25^150 => 3^501 > 5^299
\(M=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{299}+\frac{1}{300}\)
\(\Rightarrow\)Có 100 phân số
Ta có: \(\frac{1}{201}>\frac{1}{300}\)
\(\frac{1}{202}>\frac{1}{300}\)
...................
\(\frac{1}{299}>\frac{1}{300}\)
\(\frac{1}{300}=\frac{1}{300}\)
\(\Rightarrow M>\left(\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\right)=\frac{100}{300}=\frac{1}{3}\)
Vậy....
\(3^{299}< 3^{300}=\left(3^3\right)^{100}=27^{100}\)
\(2^{502}>2^{500}=\left(2^5\right)^{100}=32^{100}\)
Vì \(27^{100}< 32^{100}\)nên \(3^{299}< 27^{100}< 32^{100}< 2^{502}\)
Có : \(S=1+2+2^2+2^3+....+2^{99}\)
\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)
\(\Rightarrow S=2^{100}-1< 2^{100}\)
Vậy \(S< 2^{100}\)
S=1+2+22+23+....+299
⇒2S=2+22+23+....+2100
⇒2S−S=2100-1
S=2100-1
vì 2100 -1<2100
⇒S<2100
5299<5300=(53)100=125100
=>5299<125100
3501>3500=(35)100=243100
=>3501>243100
mà 125100<243100 nên:
5299<125100<243100<3501
vậy 5299<3501
5^299 < 5^300 = (5^2)^150 = 25^150
3^501 = (3^3)^167 = 27^167
=> 27^167 > 25^150 => 5^299 < 3^501
\(7^{32}=\left(7^{\frac{32}{99}}\right)^{99}\approx1,9^{99}\)
Vì \(1,9^{99}< 2^{99}\Rightarrow7^{32}< 2^{99}\)