Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\frac{2017^{99}+1}{2017^{100}+1}\Rightarrow2017A=\frac{2017^{100}+2017}{2017^{100}+1}=1+\frac{2016}{2017^{100}+1}\)
\(B=\frac{2017^{100}+1}{2017^{101}+1}\Rightarrow2017B=\frac{2017^{101}+2017}{2017^{101}+1}=1+\frac{2016}{2017^{101}+1}\)
\(\frac{2016}{2017^{100}+1}>\frac{2016}{2017^{101}+1}\Rightarrow1+\frac{2016}{2017^{100}+1}>1+\frac{2016}{2017^{101}+1}\)
\(\Rightarrow2017A>2017B\Rightarrow A>B\)
Vậy...
Đặt \(A=\frac{2017^{99}+1}{2017^{100}+1}\)nên \(2017A=\frac{2017^{100}+2017}{2017^{100}+1}=\frac{2017^{100}+1+2016}{2017^{100}+1}=1+\frac{2016}{2017^{100}+1}\)
\(B=\frac{2017^{100}+1}{2017^{101}+1}\)nên \(2017B=\frac{2017^{101}+2017}{2017^{101}+1}=\frac{2017^{101}+1+2016}{2017^{101}+1}=1+\frac{2016}{2017^{101}+1}\)
Vì \(1=1;\frac{2016}{2017^{100}+1}>\frac{2016}{2017^{101}+1}\Rightarrow1+\frac{2016}{2017^{100}+1}>1+\frac{2016}{2017^{101}+1}\)
Hay \(2017A>2017B\)nên \(A>B\)
Vây \(\frac{2017^{99}+1}{2017^{1001}+1}>\frac{2017^{100}+1}{2017^{101}+1}\)
vì 2017100 + 1 < 2017101 + 1
\(\Rightarrow\frac{2017^{100}+1}{2017^{101}+1}< \frac{2017^{100}+1+2016}{2017^{101}+1+2016}=\frac{2017^{100}+2017}{2017^{101}+2017}=\frac{2017.\left(2017^{99+1}\right)}{2017.\left(2017^{100}+1\right)}=\frac{2017^{99}+1}{2017^{100}+1}\)
Vậy \(\frac{2017^{99}+1}{2017^{100}+1}>\frac{2017^{100}+1}{2017^{101}+1}\)
so sánh 2 phân số cùng mẫu thì ta xét tử
đừng nói không làm được chứ
\(A=\frac{2017^{99}}{2017^{100}-2}\)
=> \(2017A=\frac{2017^{100}}{2017^{100}-2}=\frac{2017^{100}-2+2}{2017^{100}-2}=1+\frac{2}{2017^{100}-2}\)
\(B=\frac{2017^{100}}{2017^{101}-2}\)
=>\(2017B=\frac{2017^{101}}{2017^{101}-2}=\frac{2017^{101}-2+2}{2017^{101}-2}=1+\frac{2}{2017^{101}-2}\)
Do \(\frac{2}{2017^{100}-2}>\frac{2}{2017^{101}-2}\)
Nên 2017A > 2017B
Vậy A > B
So sánh
2017^2013 + 3 / 2017^2016 + 1 và 2017^2018 + 3 / 2017^2007 + 1
Mọi người ơi " / " là phần nha
1.So sánh 22011 và 31341
2.Chứng minh rằng trg 2 số 2017100-1 và 2017100+ 1 có ít nhất 1 số là hợp số
A = 0-1 + 2-3 + 4-5 +...+ 2017-2018
=> A = (-1) + (-1) + (-1) +...+ (-1) (Có 1009 số hạng)
=> A = 1009.(-1)
=> A = -1009
B = 1-3+5-7+ 9-11+....+2005-2007
=> B = (-2) + (-2) +(-2) +...+ (-2) (Có 502 số hạng)
=> B = 502.(-2)
=> B = -1004
C=1+2+3-4-5-6+7+8+9-10-11-12+.....+97+98+99-100-101-102
=> C = (1+2+3-4-5-6)+...+(97+98+99-100-101-102) (có 17 cặp số)
=> C = (-9) + (-9) +...+ (-9) (có 17 số hạng)
=> C = (-9).17
=> C = -153