Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(\frac{1}{3}-\frac{1}{2}\right)^x-1=\frac{1}{36}\)
=> \(\left(\frac{-1}{6}\right)^x=\frac{1}{36}+1\)
=> \(\left(\frac{-1}{6}\right)^x=\frac{37}{36}\)
vì ko có số nào mũ với \(\left(\frac{-1}{6}\right)=\frac{37}{36}\) => x ko tồn tại
b, \(\frac{25}{5}^x=\frac{1}{125}=>5^x=\frac{1}{125}=>5^x=5^{\frac{1}{125}}\)
=> x = \(\frac{1}{125}\)
Bạn ơi đề là \(\left(\frac{1}{3}-\frac{1}{2}\right)^{x-1}=\frac{1}{36}\) hay \(\left(\frac{1}{3}-\frac{1}{2}\right)^x-1=\frac{1}{36}\) vậy.
\(\left(\frac{1}{3}-\frac{1}{2}\right)^{x-1}=\frac{1}{36}\)
\(\Rightarrow\left(-\frac{1}{6}\right)^{x-1}=\frac{1}{36}\)
\(\Rightarrow\left(-\frac{1}{6}\right)^{x-1}=\left(\frac{1}{6}\right)^2\)
\(\Rightarrow x-1=2\)
\(\Rightarrow x=3\)
a, \(4x\left(x-5\right)+2x\left(8-2x\right)=-3\)
\(\Rightarrow4x^2-20x+16x-4x^2=-3\)
\(\Leftrightarrow-4x=-3\Leftrightarrow x=\dfrac{3}{4}\)
Vậy \(x=\dfrac{3}{4}\)
b, \(2x-5\left(x-7\right)=4\left(3-2x\right)-2\)
\(\Rightarrow2x-5x+35=12-8x-2\)
\(\Rightarrow2x-5x+8x=12-2-35\)
\(\Leftrightarrow5x=-25\Leftrightarrow x=-5\)
Vậy \(x=-5\)
Chúc bạn học tốt!!!
Ta có 2004/2003 = 2003+ 1/ 2003 = 1 + 1/2003
2003/2002= 2002 + 1/ 2002 = 1+ 1/2002
Do 1/2003 < 1/2002 => 1 + 1/2003 < 1+ 1/2002 hay 2004/2003 < 2003/2002
\(\frac{2004}{2003}\)= 1,0004992
\(\frac{2003}{2002}\)= 1,0004995
Vậy ,\(\frac{2003}{2002}\)lớn hơn \(\frac{2004}{2003}\).
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đó: ΔABD=ΔEBD
b: ΔBAD=ΔBED
nên DA=DEvà góc BAD=góc BED=90 độ
góc ABC+góc C=90 độ
góc EDC+góc C=90 độ
Do đó: góc ABC=góc EDC
c: AH vuông góc với BC
DE vuông góc với BC
Do đó: AH//DE
a) \(\frac{3}{4}+\frac{1}{4}:x=-3\)
\(\frac{1}{4}:x=-3-\frac{3}{4}\)
\(\frac{1}{4}:x=\frac{-15}{4}\)
\(x=\frac{1}{4}:\frac{-15}{4}\)
\(x=\frac{-1}{15}\)
b) \(x-\frac{1}{2}=2,5-x\)
\(x+x=2,5+\frac{1}{2}\)
\(2x=3\)
\(x=\frac{3}{2}\)
c) \(\left(x+\frac{1}{10}\right)+\left(x+\frac{1}{11}\right)=0\)
\(2x+\frac{21}{110}=0\)
\(2x=\frac{-21}{110}\)
\(x=\frac{-21}{110}:2\)
\(x=\frac{-21}{220}\)
Xét: \(\frac{\left(17^{2017}+16^{2017}\right)^{2018}}{17^{2017.2018}}=\left(\frac{17^{2017}+16^{2017}}{17^{2017}}\right)^{2018}=\left(1+\left(\frac{16}{17}\right)^{2017}\right)^{2018}\)
\(\frac{\left(17^{2018}+16^{2018}\right)^{2017}}{17^{2017.2018}}=\left(\frac{17^{2018}+16^{2018}}{17^{2018}}\right)^{2017}=\left(1+\left(\frac{16}{17}\right)^{2018}\right)^{2017}\)
Ta có: \(0< \frac{16}{17}< 1\)
=> \(\left(\frac{16}{17}\right)^{2017}>\left(\frac{16}{17}\right)^{2018}\)
=> \(1+\left(\frac{16}{17}\right)^{2017}>1+\left(\frac{16}{17}\right)^{2018}>1\)
=> \(\left(1+\left(\frac{16}{17}\right)^{2017}\right)^{2018}>\left(1+\left(\frac{16}{17}\right)^{2018}\right)^{2017}\)
=> \(\left(17^{2017}+16^{2017}\right)^{2018}>\left(17^{2018}+16^{2018}\right)^{2017}\)