Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10^{2017}}{10^{2018+1}}=\frac{10^{2017}}{10^{2019}}=\frac{1}{10^2}\)
Tương Tự với \(B=\frac{1}{10^2}\)
\(\Rightarrow A=B\)
ta có :
\(A=\frac{10^{2019}+1}{10^{2018}+1}=\frac{10^{2018}.10+1}{10^{2018}+1}=\frac{10}{10^{2018}+1}\)
\(B=\frac{10^{2018}+1}{10^{2017}+1}=\frac{10^{2017}.10+1}{10^{2017}+1}=\frac{10}{10^{2017}+1}\)
Do \(10^{2017}+1< 10^{2018}+1\Rightarrow\frac{10}{10^{2017}+1}>\frac{10}{10^{2018}+1}\)
\(\Rightarrow A< B\)
Ta có:
10A=\(\frac{10\left(10^{2017}+1\right)}{10^{2018}+1}=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}+\frac{9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\)
10B=\(\frac{10\left(10^{2018}+1\right)}{10^{2019}+1}=\frac{10^{2019}+10}{10^{2019}+1}=\frac{10^{2019}+1}{10^{2019}+1}+\frac{9}{10^{2019}+1}=1+\frac{9}{10^{2019}+1}\)
do 1=1 và \(\frac{9}{10^{2018}+1}>\frac{9}{10^{2019}+1}\)
\(\Rightarrow\)A>B
Vậy A>B
chúc bạn học tốt!
Ta có: \(B=\frac{10^2\left(10^{2017}+1\right)}{10^2\left(10^{2016}+1\right)}=\frac{10^{2019}+1+99}{10^{2018}+1+99}\)
Do phân số \(A=\frac{10^{2019}+1}{10^{2018}+1}>1\).Áp dụng BĐT \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\left(m>0\right)\).
Ta có: \(A=\frac{10^{2019}+1}{10^{2018}+1}>\frac{10^{2019}+1+99}{10^{2018}+1+99}=B\)
Vậy \(A>B\)
a) Ta có : B = \(\frac{9^{19}+1}{9^{20}+1}\)< \(\frac{9^{19}+1+8}{9^{20}+1+8}\)= \(\frac{9^{19}+9}{9^{20}+9}\)= \(\frac{9\left(9^{18}+1\right)}{9\left(9^{19}+1\right)}\)= \(\frac{9^{18}+1}{9^{19}+1}\)= A
Vậy A > B
b) Ta có : B = \(\frac{10^{2018}-1}{10^{2019}-1}\)> \(\frac{10^{2018}-1-9}{10^{2019}-1-9}\)= \(\frac{10^{2018}-10}{10^{2019}-10}\)= \(\frac{10\left(10^{2017}-1\right)}{10\left(10^{2018}-1\right)}\)= \(\frac{10^{2017}-1}{10^{2018}-1}\)= A
Vậy A < B.
NHỚ K CHO MK VỚI NHÉ !!!!!!!!
<
chuc ban hok tot
Ta có : \(\frac{10^{2019}-1}{10^{2018}-1}< \frac{10^{2019}-1+11}{10^{2018}-1+11}=\frac{10^{2019}+10}{10^{2018}+10}=\frac{10\left(10^{2018}+1\right)}{10\left(10^{2017}+1\right)}=\frac{10^{2018}+1}{10^{2017}+1}\)
Vậy \(\frac{10^{2019}-1}{10^{2018}-1}< \frac{10^{2018}+1}{10^{2017}+1}\)