Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2017^{2015}\)\(=\left(...3\right)\)
\(2015^{2014}\)\(=\left(...9\right)\)
mà \(2017^{2015}\)>\(2015^{2014}\)vì 2017>2015 ; 2015>2014
\(\Rightarrow\left(...3\right)-\left(...9\right)=\left(...4\right)\)\(\Rightarrow2017^{2015}\)\(-2015^{2014}\)\(\)chia 5 dư 4
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
a+1 chia hết cho 2015 và 2016
=> a+1 là BC(2015;2016) ; a nhỏ nhất
=> a+1 = BCNN( 2015;2016) =2015.2016 =4062240
a =4062239
Q = 51 + (52+ 53 + 54) + (55 + 56 + 57) + ....+ (52015 + 52016 + 52017)
Q = 5 + 52.(1 + 5 + 52) + ....+ 52015 .(1 + 5 + 52)
Q = 5 + 52.31 + ...+ 52015.31
Q = 5 + 31.(52 + ...+ 52015)
=> Q chia cho 31 dư 5
bài làm
Q = 51 + (52+ 53 + 54) + (55 + 56 + 57) + ....+ (52015 + 52016 + 52017)
= 5 + 52.(1 + 5 + 52) + ....+ 52015 .(1 + 5 + 52)
= 5 + 52.31 + ...+ 52015.31
= 5 + 31.(52 + ...+ 52015)
Vậy................
hok tốt
Cho A= \(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2014}.\). So sánh A với 4
\(A=\dfrac{2014}{2015}+\dfrac{2015}{2016}+\dfrac{2016}{2017}+\dfrac{2017}{2014}\\ =1-\dfrac{1}{2015}+1-\dfrac{1}{2016}+1-\dfrac{1}{2017}+1+\dfrac{1}{2014}+\dfrac{1}{2014}+\dfrac{1}{2014}\\ =\left(1+1+1+1\right)+\left[-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\right]\\ =4+\left[-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\right]\)
Vì \(\dfrac{1}{2015}< \dfrac{1}{2014}\), \(\dfrac{1}{2016}< \dfrac{1}{2014}\), \(\dfrac{1}{2017}< \dfrac{1}{2014}\)
\(\Rightarrow\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)< 0\\ \Rightarrow-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\\>0\\ \Rightarrow4+\left[-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\right]>4\)
20174n có tận cùng là 1 ; 2015n có tận cùng là 5.
Ta có: A = 20172016-20152014 = 20174.504-20152014 = (...1)-(...5) = (...6)
A có chữ số tận cùng là 6 nên khi chia A cho 5 sẽ dư 1